

Daesub Yoon, Ph.D.

Al Robot UX Research Section

ETRI

Contents

- 1. Introduction
- 2. Understanding Human
- 3. Sensing Drivers
- 4.DMS in AVs
- 5. Evaluation of DMS
- 6. Conclusion

Research Direction in ETRI

Al Robot UX Research Section

- Identify societal and technological issues on the current and the future robotics and mobility areas
- Mental model based human factor in-depth research for robotics and mobility users
- UI/UX based future robotics and mobility core technology

Main Research Interests

- Human status assessment
- 2. Human factor based robot (mobility) interaction
- 3. **Assistive** technology for mobility users
- 4. Human robot(mobility) collaboration
- 5. Mobility data acquisition/analysis/visualization
- 6. Future robot and mobility infrastructure **Improvement**

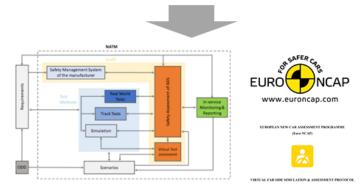
Research Background

자율주행 안전 - DMS

NTSB (National Transportation Safety Board)

- 2018년 테슬라SUV자율주행사고
- 7개의 자율차 안전이슈 성명 (2019)
- 운전자관련밀접한이슈(2개)
- 운전자주의분산
- 운전자모니터링

NHTSA ANPRM (Advanced Notice of Proposed Rulemaking)

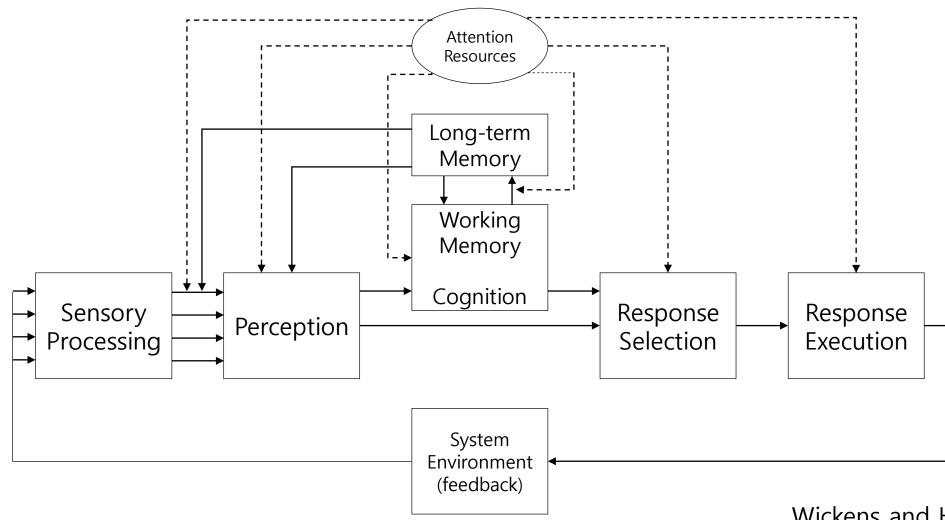

- 2021년 NHTSA사고데이터 기반 DMS의효과분석(2022)
- → 사망 및부상 30% 감소효과(고성능 DMS 개발시 50% 감소예상)

	2021 fatality numbers in ANPRM (Economic cost in parentheses)	Lives Saved (& dollars saved) Annually: DMS to reduce by 30%	Lives Saved (& dollars saved) Annually: DMS to reduce by 50% with more impactful interventions enabled by greater vehicle tech capability
Alcohol	12,581 (\$160 Bn)	3,774 (\$48 Bn)	6,291 (\$80 Bn)
Distraction	12,405 (\$158 Bn)	3,772 (\$47 Bn)	6,203 (\$79 Bn)
Drowsiness	684 (\$9 Bn)	205 (\$3 Bn)	342 (\$5 Bn)
TOTAL	25,670 (\$327 Bn)	7,701 (\$98 Bn)	12,835 (\$164 Bn)

DMS의 성능 평가

국제기구의 DMS성능 기준 및 평가 프로토콜 개발

- 국제안전기준(UNECE): WP.29에서 자율차 운전자 가용도인식 시스템(DARS) 요구
- DDAW 및 ADDW (EU GSR): 운전자졸음, 주의분산등에 대한경고 장치평가프로토콜 제시 및 2024/2026까지차량탑재의무화
- Euro NCAP: 운전자주의분산 및 피로등에 대응 가능 여부를 평가하는 프로토콜을 제시
- DAMS(중국): 운전자주의모니터링(Driver Attention Monitoring System) 요구

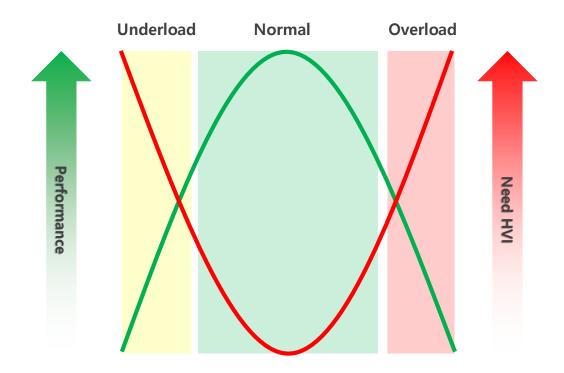

UNECE NATM 및 Euro NCAP에서 추가된 시뮬레이션 테스트 접근 방식

빠르게 변화하는 차량(특히 자율주행)기술 환경에 효과적으로 대응하기 위해 시뮬레이션 기반 테스트/평가로 패러다임 전환

Human Information Processing

Wickens and Hollands, 2000

Driver Information Perception

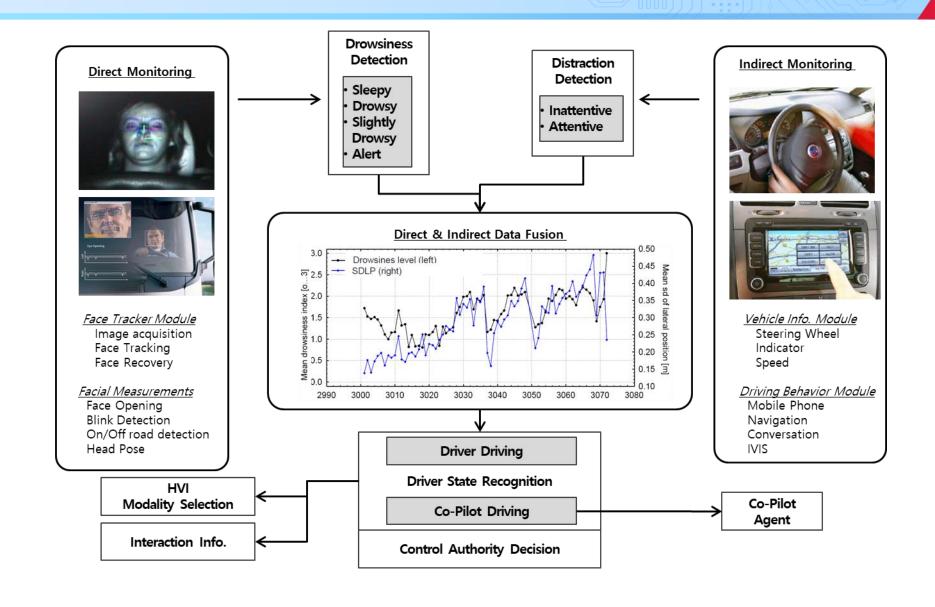


- Sense of small (olfactory)
- Sense of taste (gustatory)
- Vision (visual)
- Hearing (acoustic)
- Sense of touch and motion (haptic)

Modality Channel

Auditory presentation	Visual presentation
Simple message	Complex message
Short message	Long message
Not be referred to later	Be referred to later
Events in time	Locations in space
Immediate action	Not immediate action
Visual channel is overburdened	Auditory channel is overburdened

Driver Status


- Yerkes-Dodson Law between arousal and performance, 1908
- Drive is an "excitatory state produced by a homeostatic disturbance", [Seward, 1956]

Sensing Human

- Direct Methodology
 - Questionnaire
 - Vision Sensor : Face, eye tracking
 - Bio Sensor
- In Direct Methodology
 - Vehicle Control
 - Interaction with Vehicle
 - Driver Behavior
- Cognitive Distraction?

Driver Status Monitoring

Driver Research

HVI ('09~'14)

Inform

Warn

Support

Intervene

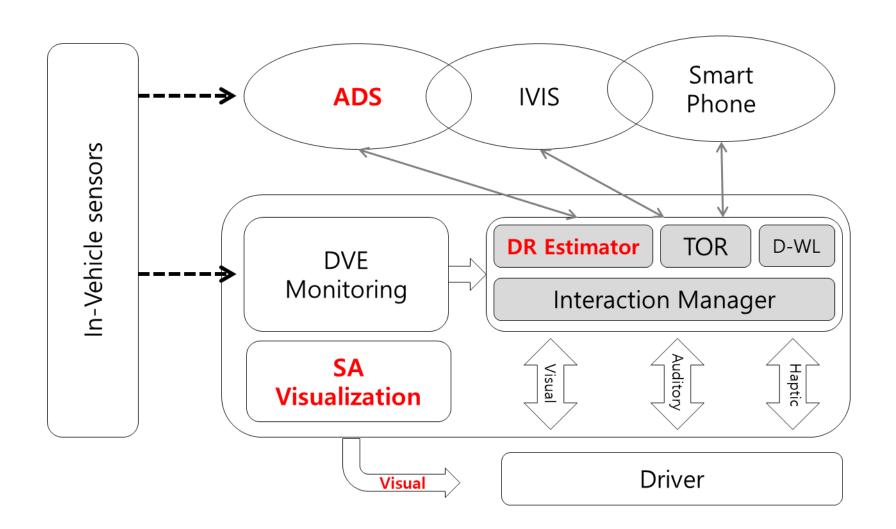
VDMS ('07~'09)

RVMS ('09~'11)

Co-Pilot ('12~'14)

DVI ('17~'21)

SOTIF ('22~'26)

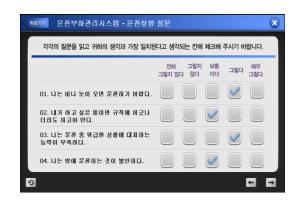

DFS ('23~'26)

Virtual Driver ('24~'27)

Driver Only

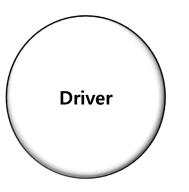
Semi- Highly
Autonomous Autonomous

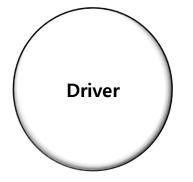
DMS Architecture

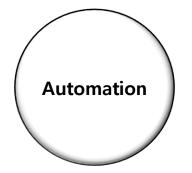


Workload Management System

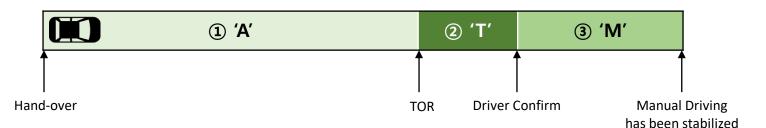





State Transition in AVs



- Driver initiated
- Driver initiated, failed
- ADS initiated
- ADS initiated, failed


Automation

- Driver initiated
- Driver initiated, failed
- ADS initiated
- ADS initiated, failed

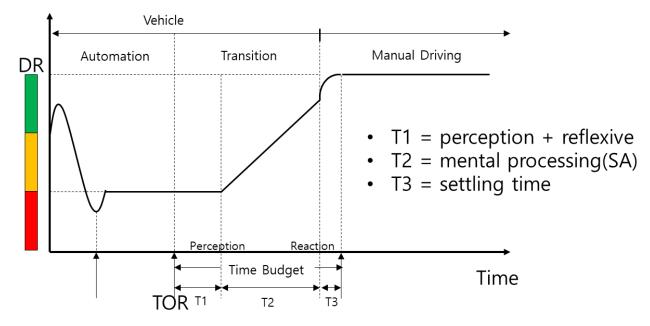
DVI Experiments

Information Collection

- Driving Simulation
- Vehicle Control
- Physiological Info.
- Driver Behavior
- Interaction
- Attention

NDRT

- No Task
- Visually Demanding Task
- Mentally Demanding Task
- Complicated Task


Information Provision

- Visual
- Auditory
- Haptic
- Multi-Modal
- Pre-Cue

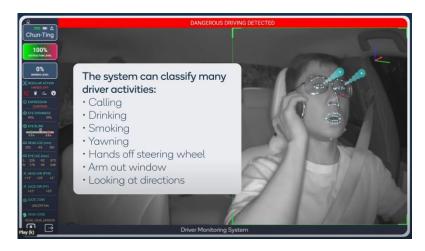
Questionnaires

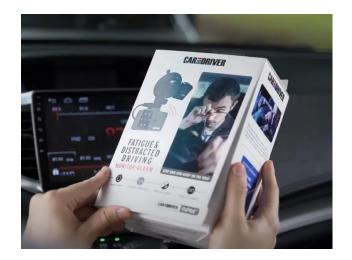
- Demographic Info.
- NASA-TLX
- RSME
- VAS
- Interviews

DVI Experimental Results

$n=9^{\circ}$	1, ((sec
---------------	------	------

region	mean	min	max	range	variance	standard deviation
T1	2.89	1.82	5.83	4.01	0.55	0.74
T2	1.43	0.40	7.00	6.60	0.81	0.90
Т3	14.25	1.20	68.50	67.30	113.58	10.66
Time Budget	18.58	6.02	71.83	65.81	111.56	10.56


DMS Concepts



DeepDMS

https://youtu.be/PiERp2cBMWg

Qualcomm, https://youtu.be/-zu_uLDMV90

https://youtu.be/tTPwT7PrQmc

Virtual Driver Project

사업명

- 자동차산업기술개발사업 (스마트카) -

글로벌 안전기준 대응 가상 운전자 모델 기반 DMS 성능 평가 시스템 개발

사업기간

총연구기간

2024.04.01 ~ 2027.12.31 (45개월)

당해년도 연구기간

2025.01.01 ~ 2024.12.31 (12개월)

사업비

총 89.23억 (국비: 80억 민간: 9.23억)

주관 기관

총괄책임자: 김우진

참여 기관

-MORAI-

FUSIONSOFT

책임자: 박종윤

책임자: 전성훈

책임자: 명노해

KSA

K'EL

책임자: 이영석

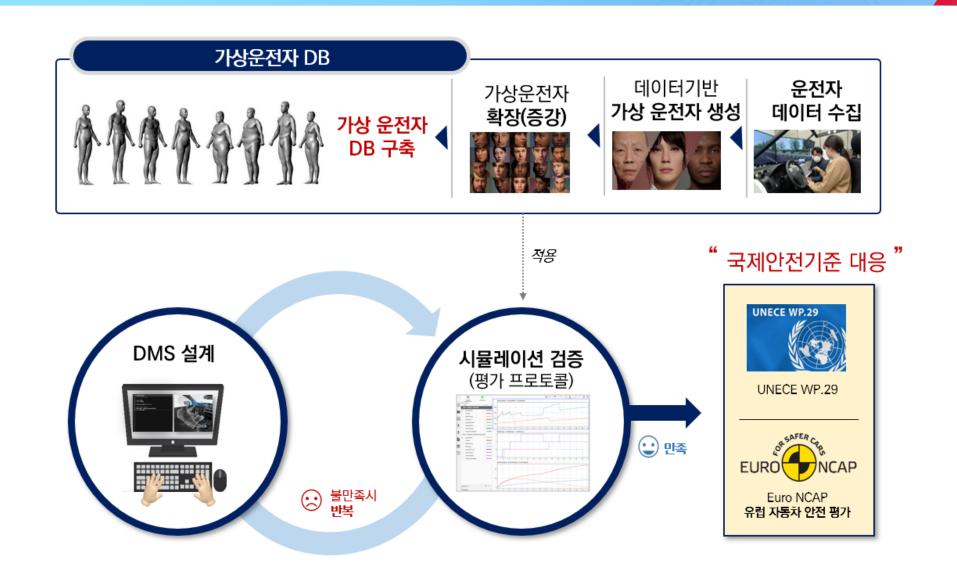
책임자: 김종화

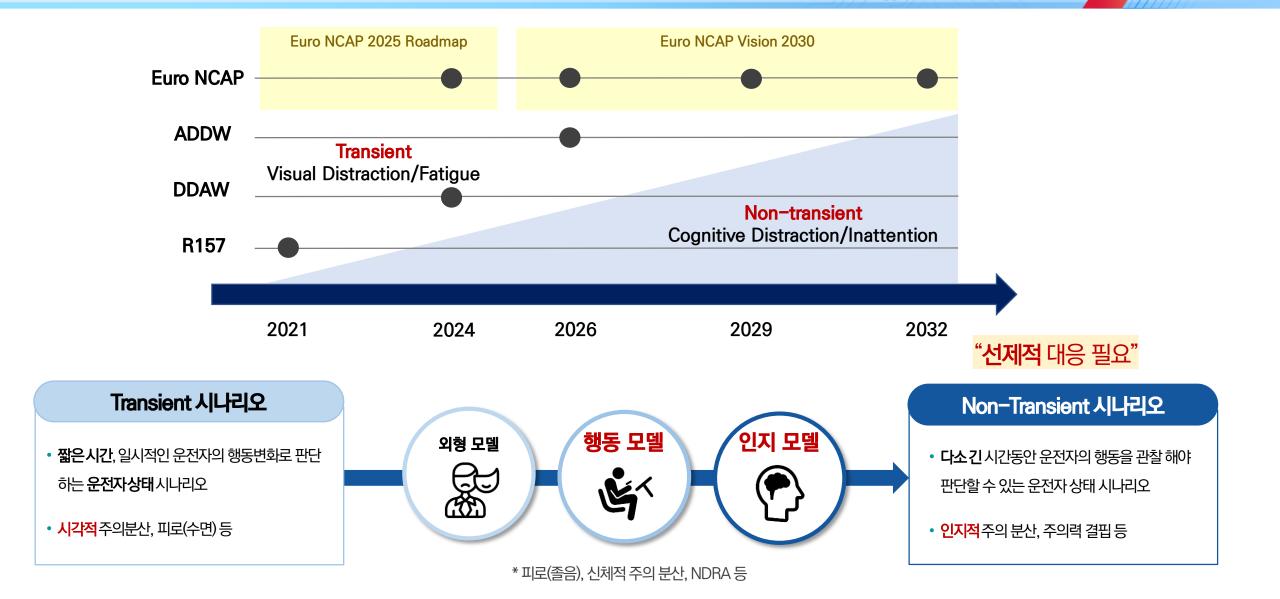
책임자: 박수진

책임자: 고재규

책임자: 이대선

국외기관


국내기관



책임자: Mansoor Nasir

Research Concept

Euro NCAP Roadmap

Objectives

가장 중요한 기술적 해결 과제

정교한 Human-like 가상운전자 모델링

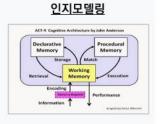
차별화된 기술 구현 방안

포토리얼 외형 모델링

✓ 언리얼 엔진 기반의

사실적 디지털 휴먼 생성

✓ 눈 움직임, 얼굴표정 등 행동모델
애니메이팅 동기화 기술


<u>인공지능 기반</u> 행동 모델링

✓ 시메틱 정보(프롬프트) 기반의

설득력 있는 다변화 애니메이팅

ACT-R 기반

✓ <u>인지 신경과학 기반</u>으로 개발, <u>Computational 인지 아키텍</u>

처 구성

도전성

Non-transient 시나리오 대응

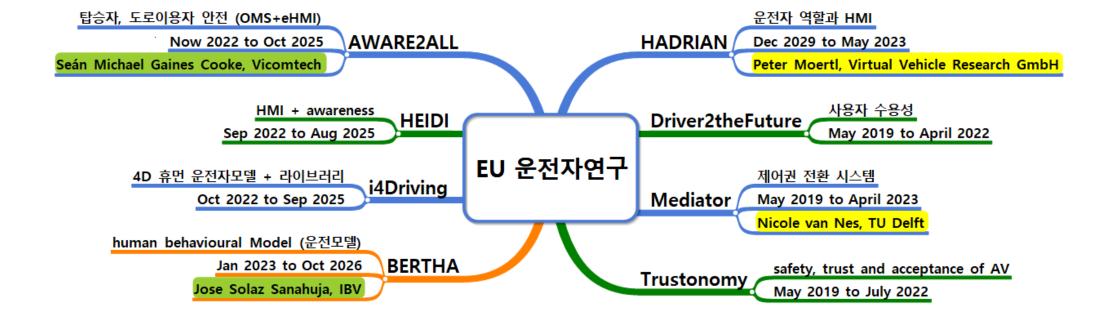
- NDRA 모델링
- 인지 분산 모델링
- 주의력 결핍 모델링

PoC: DMS 성능 항상 검증

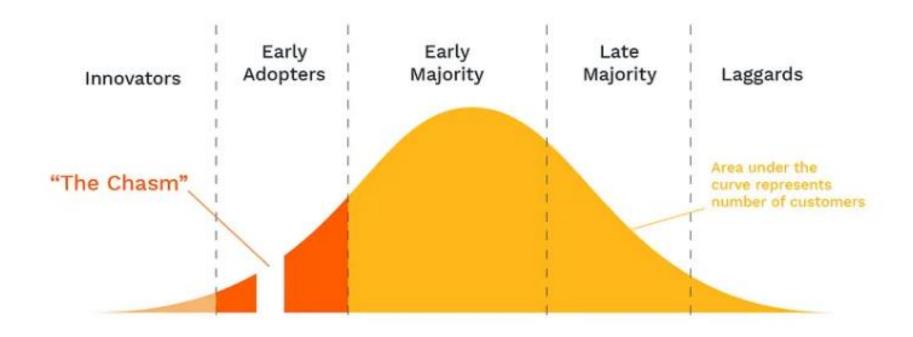
- 가상운전자 기반 평가
- Synthetic Data활용
- 성능향상 검증

Feasibility Test를 통한

"성공 가능성" 확인



기반 보유기술				
휴먼 디지털 트윈 기술	AI 기반 실사 휴먼			
휴먼 행동 시뮬레이션	생성 기술			
HD급 자율주행 검증용 가상	국내유일 ACT-R 기반			
환경 생성 기술	인지모델링 기술			
실도로/실차 운전자	국내 유일 환경 챔버형			
데이터 취득 플랫폼	자율주행 시뮬레이터			


EU Driver Research

DMS Info. Requirements

DVE	Info	Research	Transfer	Market	Sensors
Driver	Eye/Head	0	Δ	Δ	Eyetracker / Head tracker
	Gesture	0	\circ	Δ	Depth camera
	Smart Phone	0	0	0	Smart Phone
	Physiological	0	Δ	Δ	ECG(HR, HRV), RSP
Vehicle	Speed	0	0	0	CAN
	Steering	0	\circ	\circ	CAN
	ADS	0	0	0	ADS
	ODD	0	\circ	\circ	ADS
Environments	Road	0	0	0	ADS (Map, FCW, LKS)
	Traffic	Δ	Δ	Δ	VTI
	Illumination	0	Δ	Δ	Driving time
	Weather	Δ	Δ	Δ	VTI

Conclusion

https://medium.com/block6/why-web3-will-have-the-hardest-ui-ux-challenge-any-industry-has-ever-faced-b418d3cc75fe

Technology Adoption Lifecycle