

Martin FRITZ / 4activeSystems GmbH

Euro NCAP – ADAS history

Euro NCAP – Research Projects

- vFSS static Pedestrian Targets 2010-2011
- ASPECSS introducing Surfboard Test-system VRU 2011-2014
- ACEA/CLEPA Euro NCAP Articulated Pedestrian Target 2013-2015
- Euro NCAP CATS European Bicyclist Target 2014 -2016
- EU-Project Prospect **Euro NCAP** 2020 VRU Protocol 2015 2018
- Euro NCAP MUSE European Motorcycle Target 2017 -2019
- CNCAP CATARC Electrical Scooter Target for C-NCAP 2021 2018-2020
- Asian-NCAP OASIM Asian motorized two-Wheeler 2020 2022
- EU-Project Headstart –validation procedures for Automated Driving 2019 2022

OASIM Project (Asian NCAP)

The OASIM project aims to improve the safety of motorcyclists in the ASEAN region by creating active safety testing protocols that are representative of the accident situations in this region. In Southeast Asian countries, the number of seriously injured drivers of m otorized 2- and 3-wheelers is significantly higher. The OASIM project aims to develop pr otocols and appropriate test equipment that will help reduce the number of accidents in Asian countries.

Beginning: Q1/2019

End: Q3/2023

4a Products: 4activeMC-AMT

4activeFB small

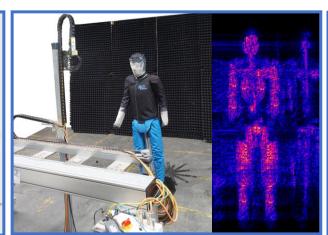
Partner:

TOYOTA
NISSAN
DAIHATSU
HONDA
YAMAHA
MITSUBISHI

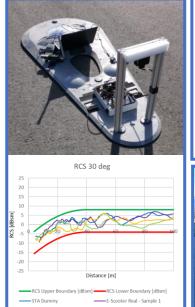
DENSO VALEO HITACHI

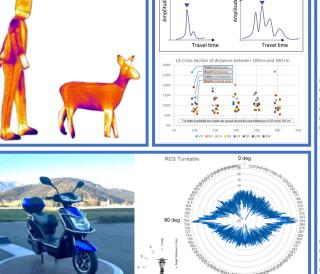
MIROS CEESAR ASEAN NCAP UTAC 4activeSystems

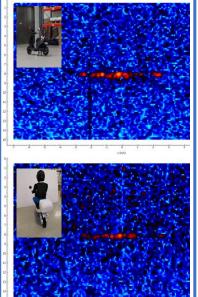
OASIM Project (Asian NCAP)

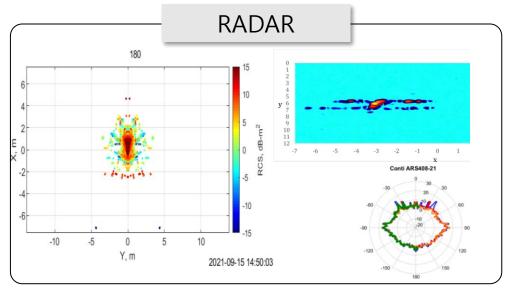

CAMERA

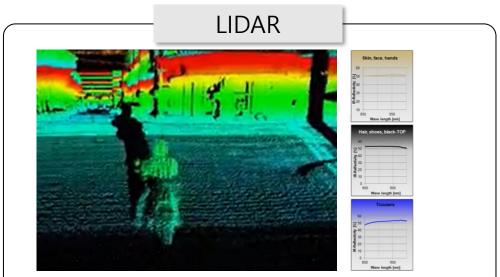
✓ CAMERA-LIDAR SCANNER


RADAR

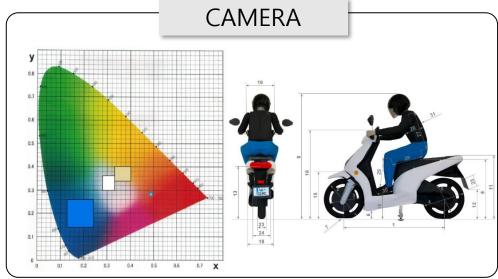

- ✓ RADAR SCANNER
- ✓ RADAR MEASUREMENT ROBOT
- ✓ RADAR TURN TABLE
- ✓ MICRODOPPLER TESTBENCH
- **LIDAR** (NEAR INFRARED)
 - ✓ IR SPECTROMETER
- THERMO CAM (FAR INFRARED)
 - ✓ INFRARED CAMERA
- ULTRASONIC
 - ✓ ULTRASONIC LAB

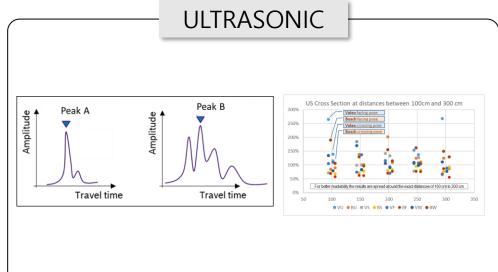


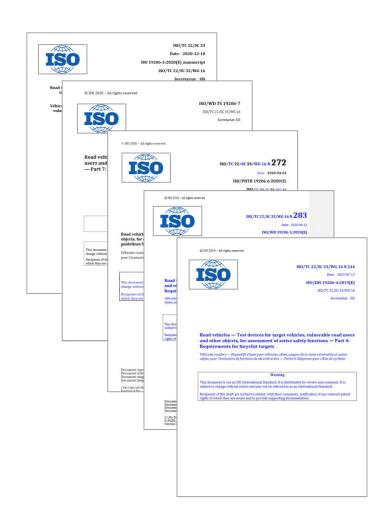




E-Scooter Sample 1 unfiltered data, distan




OASIM Project (Asian NCAP)



ISO Standards related to ADAS Targets

ISO 19206-2 Requirements for pedestrian targets

ISO DIS 19206-3

Requirements for passenger vehicle 3D targets

ISO 19206-4

Requirements for bicyclist targets

ISO 19206-5

Requirements for power-two-wheeler targets

ISO PRE 19206-6

Requirements for animal

ISO 19206-8

Requirements for test systems

ISO 19237

Pedestrian Detection and Collision Mitigation Systems (PDCMS)

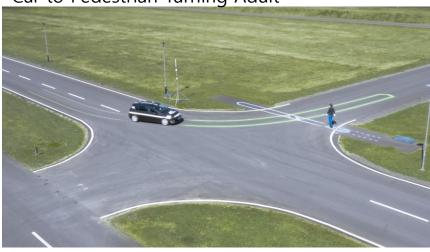
ISO 22078

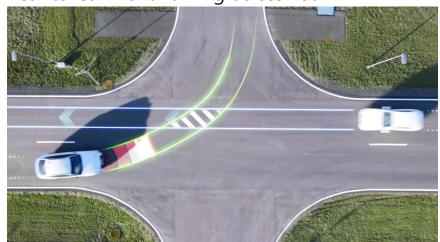
Bicyclist detection and collision mitigation systems (BDCMS)

ISO 22133

Test object monitoring and control

Typical NCAP – Scenarios -2025




CNCAP - **STA-BSM** Scooter Target Asia – Blind Spot - Merging

Euro NCAP **CPTA**Car to Pedestrian Turning Adult

Euro NCAP - **CCFTAP**Car-to-Car-Front-Turning across Path

Slightly more complex

Euro NCAP – approved Testlabs

\(\(\)	

Test Laboratory (Status March	P	assive Safety		Active	Safety
2025)	Full scale	Ped Pro	Whiplash	Track tests	On-road**
ADAC (Germany)	Yes	Yes	Yes	Yes	
Applus+ IDIADA (Spain)	Yes	Yes	Yes	Yes	Yes
Asta Zero (Sweden)	-	-	-	Yes	
BASt (Germany)	Yes	Yes	Yes	Yes	Yes
CSI (Italy)	Yes	Yes	Yes	Yes	
DEKRA (Germany)	-	-	-	Yes	
Horiba MIRA (Great Britain)	Yes	Not aPLI	-	Yes	
SLA [TECCON/ALP.lab/TUG] (Austria)	Yes	-	-	Yes	
Thatcham Research (Great Britain)	Yes*	-	Yes	Yes	
TASS/TNO (Netherlands)	Yes	Yes	Yes	Yes	Yes
Transpolis (France)	-	-	-	Yes	
UTAC (France)	Yes	Yes	Yes	Yes	
IVEX (Belgium)	-	-	-	-	Yes
CAERI (China, co-accreditation)	Yes	Yes	-	-	-
CATARC (China, co-accreditation)	Yes	Yes	-	-	-
SMVIC (China, co-accreditation)	Yes	Yes	-	-	-
	* MPDB outsourced				** For 2026 testing

Euro NCAP 2026 - New Rating Approach

2009-2025

Reason for a New Rating System

- Adaptation to future safety developments like assisted and automated driving
- •Better structure and clearer communication
- •Stronger focus on efficiency, robustness, and consumer acceptance
- •Benefiting from advances in testing, adding virtual and road testing

What's New?

- •Starts in 2026, 3-year update cycle
- •New naming and structure for better consumer understanding
- •Current tests rearranged and new assessments added
- •Enabling links between boxes, for instance between Safe Driving and Cras h Avoidance

Euro NCAP 2026 - 4 Stages of a Crash

Safe Driving

Supporting safer driving behavior.

Technologies:

Seat Belt Reminder (SBR)
Driver Monitoring System (DMS)
Speed Assistance Systems

Crash Avoidance

Preventing collisions through alerts or interventions.

Categories:

Frontal Collision Avoidance Lane Departure Warning/Prevent ion Other collision types

Post-Crash Safety

Emergency response during the "gol den hour."

Measures:

Rescue Information
Post-Crash Intervention
Extrication Support

Crash Protection

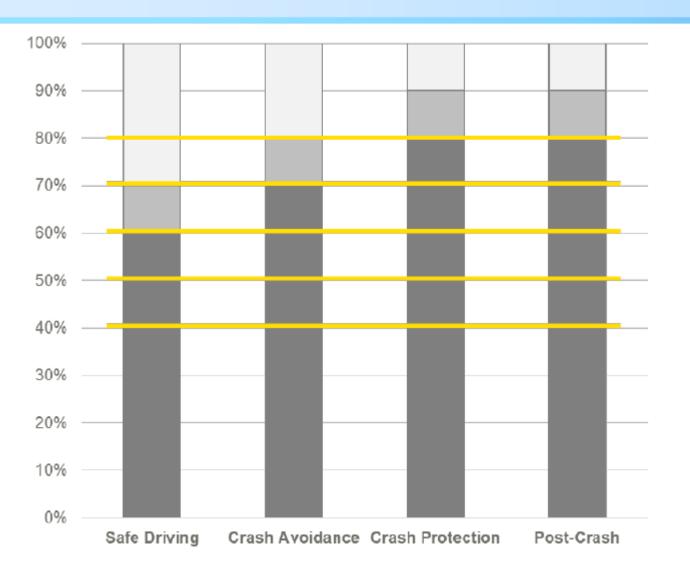
Minimizing injury during impact.

Areas:

Frontal Impact
Side Impact
Whiplash Protection
Vulnerable Road User (VRU) Protection

Euro NCAP 2026 – enabling Links

Safe Driving	Safe Driving Crash Avoidance		Post-Crash
Occupant monitoring	Frontal collisions	Frontal impact	Rescue information
Driver engagement	Lane departure collisions	Side impact	Post-crash intervention
Vehicle assistance	Acceleration prevention	Rear impact	Extrication
		VRU impact	



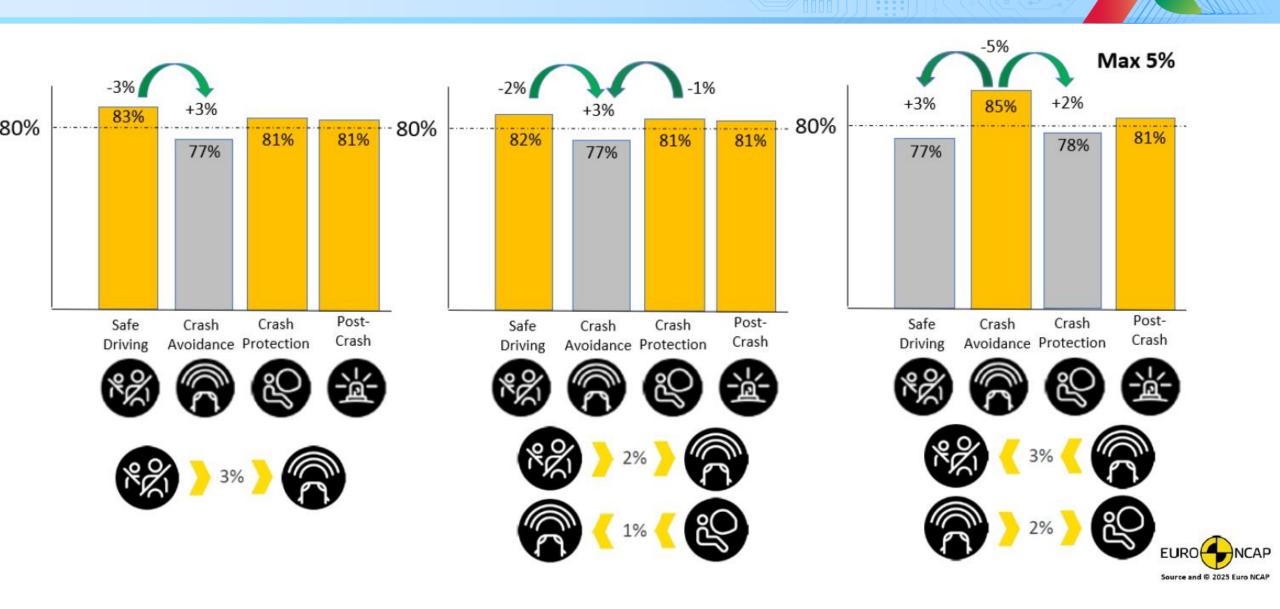
Euro NCAP 2026 – Rating Limits

Star rating limits

5-stars 80%

4-stars 70%

3-stars 60%


2-stars 50%

1-star 40%

Soft landing for 2026 & 2027

Stor Poting	Safe D	Priving	Crash Avoidance	
Star Rating	2026	2027	2026	2027
5	60	70	70	80
4	50	60	60	70
3	40	50	50	60
2	30	40	40	50
1	20	30	30	40

Euro NCAP 2026 - Compensation Rules

Euro NCAP 2026 – 5 Star Requirements

					700		
Safe Driving		Crash Avoidance		Crash Protection		Post-Crash	
Occupant Monitoring	30	Frontal Collisions	60	Frontal Impact	40	Rescue Information	40
Seatbelt usage	10	Car & PTW	40	Offset	20	Rescue Sheets	35
Occupant classification	10	Pedestrian & Cyclist	20	Full Width	10	Rescue Guide	5
Occupant presence	10			VT & Sled	10		
		Lane Departure Collisions	20			Post-Crash Intervention	25
Driver Engagement	30	Lane Departure	10	Side Impact	35	Advanced eCall	20
Driver Monitoring	25	Car & PTW	10	MDB	15	Multi-collision Brake	5
General Vehicle Controls	5			Pole	10		
		Low Speed Collisions	20	Farside	10	Vehicle Extrication	35
Vehicle Assistance	40	Car & PTW	10			Energy Management	20
Speed Assistance	20	Pedestrian & Cyclist	10	Rear Impact	5	Occupant Extrication	15
ACC Performance	15						
Steering Assistance	5	Active Safety tes		VRU Impact	20		
		ts for the proving		Head impact	10		
		ground		Pelvis & Leg impact	10		
Weight: 20	100	Weight: 20	100	Weight: 50	100	Weight: 10	100

Standard + Extended Tests ~1200 Robustness Tests >5000

Euro NCAP 2026 – The Layers

V

Layer	Description
Standard Range	Baseline tests under ideal conditions; foundational performance.
Extended Range	Adds minor complexity (e.g. speed variations, impact positions).
Robustness Layer	Introduces real-world variability (e.g. weather, illumination, driver input, ta rget appearance).

CCCcon	Function	GVT speed						
CCCscp	FullClion	20 km/h	30 km/h	40 km/h	50 km/h	60 km/h	70 km/h	80 km/h
20 km/h	AEB							
30 km/h	AEB							
40 km/h	AEB						N/A	N/A
50 km/h	AEB						N/A	N/A
60 km/h	AEB						N/A	N/A
70 km/h	AEB			N/A	N/A	N/A	N/A	N/A
80 km/h	AEB			N/A	N/A	N/A	N/A	N/A

	EBT	_ ,.		Impact I	Location	
CBLA	speed	Function	10%	25%	50%	75%
20 km/h	15 km/h	AEB				
30 km/h	15 km/h	AEB				
40 km/h	15 km/h	AEB				
50 km/h	15 km/h	AEB				
60 km/h	15 km/h	AEB				
50 km/h	20 km/h	FCW				
60 km/h	20 km/h	FCW				
70 km/h	20 km/h	FCW				
80 km/h	20 km/h	FCW				

Euro NCAP 2026 – Robustness Layer

	Robustness layers (Perception) Description		Verification	Performance prediction
Туре	Layer		Test	source
Target	Туре	Different collision partner type (e.g., Car: Vehicle Cat.: N1, N2, N3 PTW: Vehicle Cat.: L1, Bicyclist: Powered Standing Scooter)	No	
T _a	Appearance	Same collision partner type but with different appearance (e.g., colour, accessories, shape)	No	
	Adverse weather conditions	Functionality available under the presence of Rain, Fog, Dirt/ice/moisture	No	
(Night time) Illumination - Glare Infrastructure / clutter	Performance in darkness (1 lux) for all daytime scenarios	No*		
	Functionality available under the presence of glare caused by Low sun (all scenarios)	No	Field Data**	
	Performance under the presence of glare caused by headlights of a stationary vehicle on adjacent lane (all standard nighttime scenarios)	No*		
	Performance in environments cluttered with objects such as urban furniture or secondary road		No*	
	Obscuration / Obstruction	Variance in the layout of nominal obstructions	No*	

- Variable target heading
- Variable targets types
- Variable target colors, shape, accessories etc.
- Variable adverse weather conditions
- Variable illuminations and light conditions
- Variable objects in test environment
- Variable obscuration/obstruction

Robustness testing requires repeatable, control led execution of complex scenarios, including:

- Variable driver steering input
- Variable target speeds
- Variable target acceleration
- Variable target positions

Target Rol Layer	oustness layers Scenarios	Verification condition*	Assessment Criteria	
	CDNIA CDEA	+5 km/h	≠red	
	CBNA, CBFA, CBNAO	-3 km/h	Same or better than Standard Range	
Acceleration	CCRb, CMRb	+2 m/s ²	Same or better than Standard Range	
	·	-2 m/s ²	≠red	
	CPNA, CPFA, CBNA, CBFA, CPNCO, CBNAO	-25% m of distance to impact	≠red	
Initial position	СРТА	point	Same or better	
offset	CCFtap, CMFtap, CBTA	±0.5m Path offset	than Standard Range	
	CCRb, CMRb	±0.5s Time headway	≠red	
Trajectory/ Heading	CCRs, CMRs CPNA, CPFA, CBNA, CBFA, CPNCO, CBNAO	±20° (rotation around the impact point)	Same or better than Standard Range	

Euro NCAP 2026 - Scoring

Standard Range

Each grid cell scored by predicted color:

- Green = 1.00
- Yellow = 0.75
- Orange = 0.50
- Brown = 0.25
- Red = 0.00

Extended Range

Grid cells scored:

- Brown to Green = 1.00
- Red = 0.00

Final score:

- 50–74.99% = 50%
- 75–99.99% = 75%
- 100% = 100%

Robustness Layer

Score = 100% if passed, 0% if failed.

Eligibility: ≥50% score in Standard Range.

Scenario	Standard	Extended	Robustness	Total
Car-to-Car Rear	5.2 pts	0.65 pts	0.65 pts	6.5 pts
Car-to-Car Front	4.0 pts	0.5 pts	0.5 pts	5.0 pts
Car-to-Motorcycle Rear	2.8 pts	0.35 pts	0.35 pts	3.5 pts
Crossing (Car/PTW)	6 pts	0.75 pts	0.75 pts	7.5 pts

CBLA	EBT speed	Function	Impact Location			
			10%	25%	50%	75%
20 km/h	15 km/h	AEB				
30 km/h	15 km/h	AEB				
40 km/h	15 km/h	AEB				
50 km/h	15 km/h	AEB				
60 km/h	15 km/h	AEB				
50 km/h	20 km/h	FCW				
60 km/h	20 km/h	FCW				
70 km/h	20 km/h	FCW				
80 km/h	20 km/h	FCW				

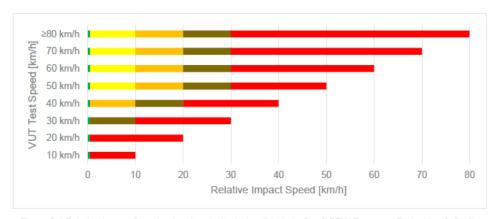


Figure 5-1 Relative Impact Speed colour band criteria (applicable to Car & PTW Rear, and Pedestrian & Cyclist Longitudinal / Crossing)

Figure 5-2 Speed Reduction colour band criteria (applicable to Car & PTW Front)

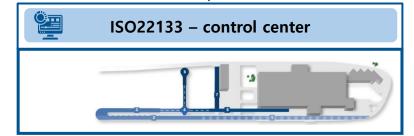
filling the gap virtual/physical - validation

RD - Tools

Real Road Testing

Driving Simulators

Hardware in the Loop


Software in the Loop


Vehicle in the Loop

Open Scenario, Open Drive (Open X)

Scenario Data Base - converter

External data

Accident Database, NC AP, GTR UNECE

Standards-Regulation NCAP, GTR, UNECE

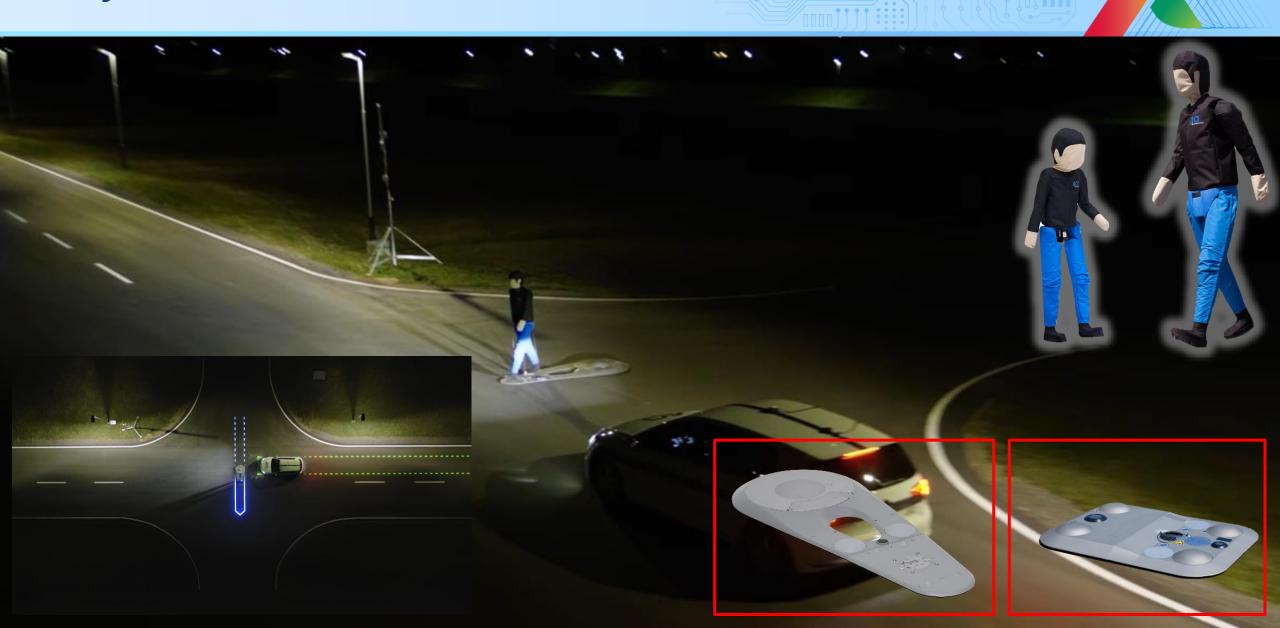
Scenario Database

Specific Test Cases

Environment Simulatio

Validated virtual ADAS and Occupant models

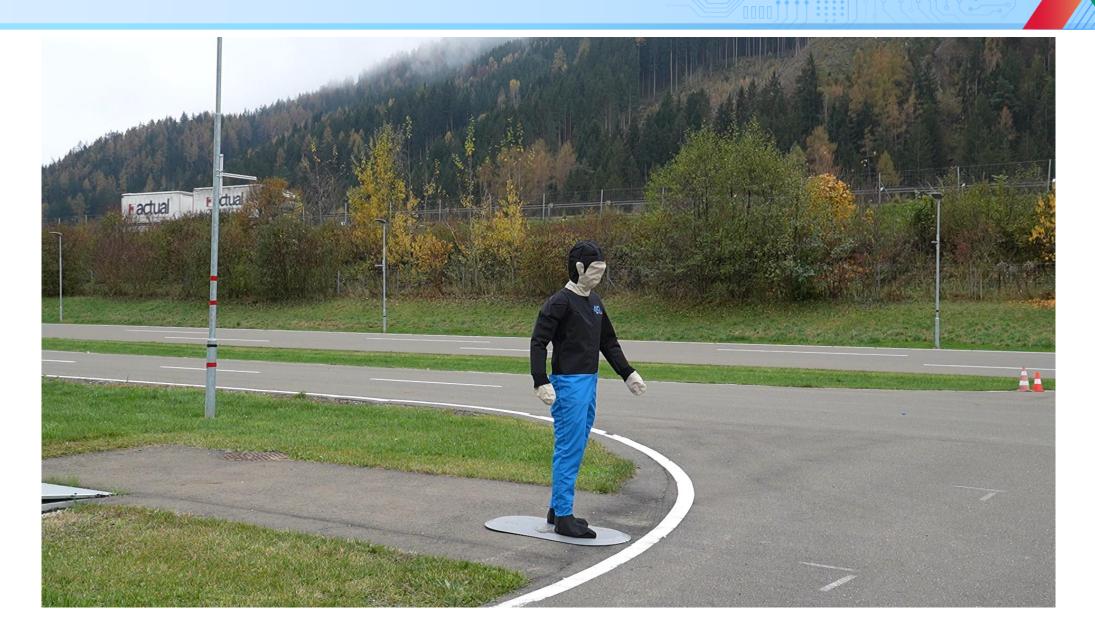
Beyond 2026


Intention recognition (Pedestrian turning head, realistic actor)?

Extension of night scenarios and low light conditions?

Considering of Wildlife accidents?

Extension of virtualization capability and models?


Beyond 2026

Beyond 2026

Summary

