



# 폐LFP배터리 재활용 기술 개발 현황

김 문 성 / ㈜에코알앤에스





### **Contents**

1. Main Value

2. Background

3. Tech. Status

4. Eco' LFP Process

### **Main Value**











에코알앤에스

### **Background**

- 세계적 탄소중립 강화 & 폐배터리 재활용율 및 소재 활용 강화

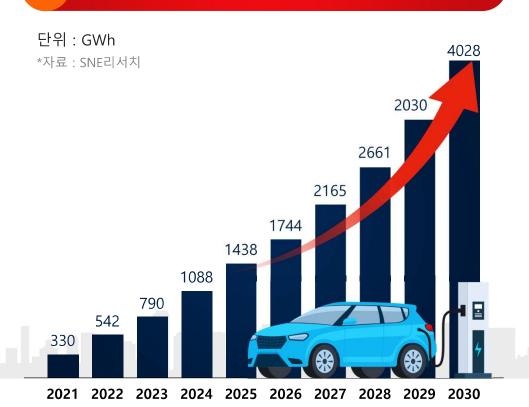




#### 주요국 탄소중립 확대

| 구분 | 2015                              | 2030                    |                        |                    | 2050                 |                        |                    |
|----|-----------------------------------|-------------------------|------------------------|--------------------|----------------------|------------------------|--------------------|
|    | 탄소<br>배출량<br><sub>(MtCO2eq)</sub> | 목표                      | 탄소<br>배출량<br>(MtCO2eq) | 2015년<br>대비<br>감축율 | 목표                   | 탄소<br>배출량<br>(MtCO2eq) | 2015년<br>대비<br>감축율 |
| EU | 4,335                             | '90년 대비<br>55%<br>감축    | 2,581                  | 40%                | 탄소중립                 | -                      | 100%               |
| 미국 | 6,676                             | '05년 대비<br>26~28%<br>감축 | 4,281<br>~ 4,445       | 33%~36%            | '05년 대비<br>80%<br>감축 | 1,317                  | 80%                |
| 한국 | 693                               | '17년 대비<br>24.4%<br>감축  | 536                    | 23%                | -                    | 179<br>~ 426           | 39%<br>~ 74%       |
| 일본 | 1,319                             | '13년 대비<br>26%<br>감축    | 1,042                  | 21%                | '13년 대비<br>80%<br>감축 | 281.6                  | 79%                |
| 중국 | '30년까지 탄소배출 정점 → '60년까지 탄소 중립     |                         |                        |                    |                      |                        |                    |



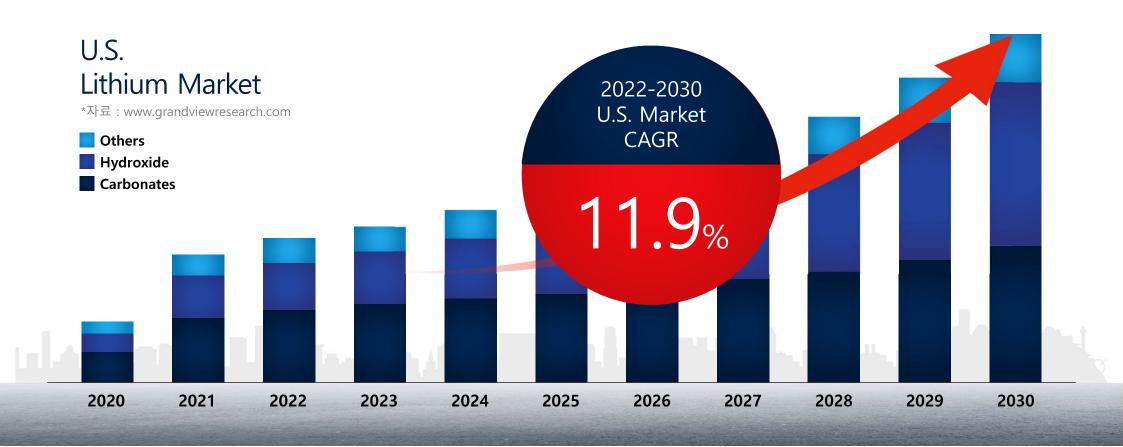

#### 폐배터리 재활용율 및 소재 활용 강화

| 구분 | 내용                                                                                                                                                                                                                                                                                                                |  |  |  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 한국 | • 미래폐자원 거점수거 센터 운영                                                                                                                                                                                                                                                                                                |  |  |  |
| 중국 | • 폐배터리 생산자 책임제 시행, 폐배터리 원자재 회수<br>조건 설정(Ni, Co, Mn 98%, 리튬 85%)                                                                                                                                                                                                                                                   |  |  |  |
| 미국 | <ul> <li>폐배터리 재활용 비율 5% → 90% 확대 계획 수립</li> </ul>                                                                                                                                                                                                                                                                 |  |  |  |
| EU | <ul> <li>리튬배터리 재활용 비율 2025년 65% → 2030년 70%</li> <li>배터리 제조시 재활용 소재 사용 비중 2030년 Co 16%, Li 6%, Ni 6%     → 2035년 Co 26%, Li 12%, Ni 15%</li> <li>핵심광물 수거 비중 2027년 Co, Ni 90%, Li 50%     → 2031년 Co, Ni 95%, Li 80%</li> <li>2024년부터 전기차 배터리의 탄소발자국 공개의무화 실시</li> <li>2027년부터 탄소발자국 상한선을 넘을 시 EU내 판매금지</li> </ul> |  |  |  |

### Background - 폐배터리 발생량 증가



#### 글로벌 전기차 배터리 수요 전망



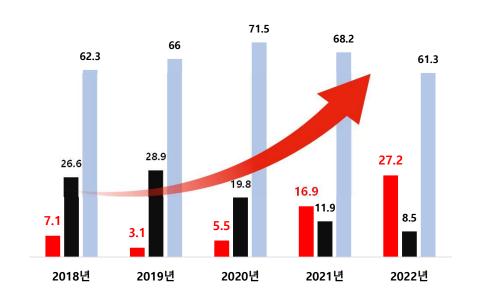

#### 향후 10년간 폐배터리 발생량



## Background - 지속적인 Li 수요량 증대





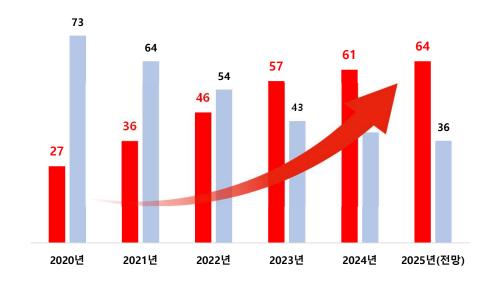

### Background - LFP 배터리의 시장점유율 증가





#### 배터리 종류별 시장 점유율(%)

단위 : % \*자료 : EV볼륨 ■ LFP ■ NCA ■ NCM






#### 글로벌 양극재 업계 생산Capa. 점유율 및 전망



\*자료 : 트렌드포스 ■LFP 양국재 ■삼원계 양국재

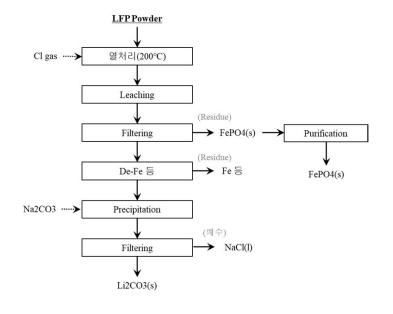


# Background - 국내외 LFP 배터리 적용 전기차 현황

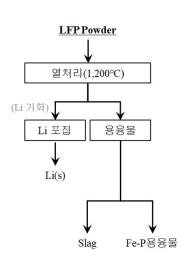




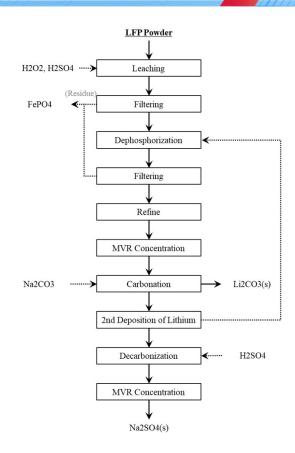










### Tech. Status - 국내외 기술 현황

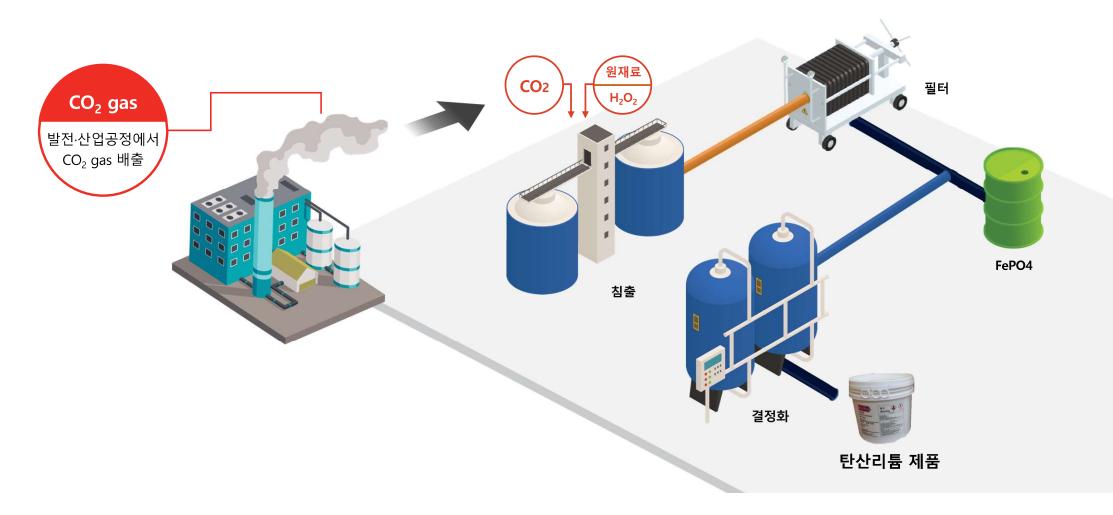






**KIGAM** 




**China** 

# Tech. Status - 각기술별 요소 비교


| 구분    | 국      | 해외                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |
|-------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| TE    | KIGAM  | KAERI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <del>ठ</del> ेंच        |
| 방식    | 건식     | 건식+습식                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 습식                      |
| 제품    | Li, C  | Li2CO3, FePO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Li2CO3                  |
| 부원료   | +@     | Cl gas, Na2CO3, +@                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H2SO4, H2O2, Na2CO3, +@ |
| 탄소저감  | 불가     | 불가                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 불가                      |
| 폐수    | 무      | On The Control of the | e<br>H                  |
| 에너지사용 | 고(열처리) | 고(열처리)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 고(농축 공정)                |
| 공정 개수 | >3     | >4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >5                      |
| CAPEX | 고      | 고                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 고                       |
| 제품순도  | >99.8% | >98.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | >99.8%                  |
| 회수율   | -      | 99.8%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                       |

### **Eco' LFP Process**

- CCUS, Simple한 공정, 無폐기물, 無오염물질



### Eco' LFP Process - 공정상세 및 요소별 검토



| 구분    | 당사                |  |  |
|-------|-------------------|--|--|
| 방식    | 습식                |  |  |
| 제품    | Li2CO3, FePO4     |  |  |
| 부원료   | CO2 gas, H2O2, +@ |  |  |
| 탄소저감  | CCUS 가능           |  |  |
| 폐수    | 무                 |  |  |
| 에너지사용 | 저                 |  |  |
| 공정 개수 | 3                 |  |  |
| CAPEX | 저                 |  |  |
| 제품순도  | >99.7%            |  |  |
| 회수율   | >90%              |  |  |

### Eco' LFP Process - 폐LFP배터리(파우치) 전처리 공정























# Eco' LFP Process - 탄산리튬 제조 공정











| 한 국 제 다 및 기 를 권<br>P52851 강성남도 한주시 소호로 101(출무공통)<br>(14: 055-792-2757, Fax: 055-792-2750) |         | 성적서번호: 2025-1556<br>페이지 (2)/(종 2) | KI(           | KIET |  |
|-------------------------------------------------------------------------------------------|---------|-----------------------------------|---------------|------|--|
|                                                                                           | 시       | 험 결 과                             |               |      |  |
| 시로명                                                                                       | 시험분석항목  | 시험분석결과                            | 시험분석방법        | 813  |  |
|                                                                                           | 5-70    | -0.01                             |               |      |  |
|                                                                                           | Fe (%)  | <0.01                             |               |      |  |
|                                                                                           | Ti (N)  | <0.01                             |               |      |  |
|                                                                                           | Na (%)  | 0.015                             |               |      |  |
|                                                                                           | K (%)   | 0.01                              |               |      |  |
| 400 Re Li <sub>2</sub> CO <sub>3</sub>                                                    | P 09    | 0.15                              |               |      |  |
|                                                                                           | Zn (10) | <0.01                             |               |      |  |
| 4                                                                                         | Ov (90) | <0.01                             |               |      |  |
|                                                                                           | N (90)  | -0.01                             |               |      |  |
|                                                                                           | Cr (10) | -0.01                             |               |      |  |
|                                                                                           | Li 69   | 17.9                              | 소식보석 및 2121보석 |      |  |

### Eco' LFP Process - LFP 재활용 P.P 운전 예정





- Pilot Plant 설계 및 설비 제작 완료
- >70kg/batch capa. ※ 원재료 투입 기준
- 10월중 Setting 완료 및 운전 예정
- 탄산리튬 시제품 생산 및 판매 추진

# 경청해 주셔서 고맙습니다!!

문의 CEO 류상훈 / <u>shyoo@eco-rns.com</u>