

원샷 리싸이클링

김영태 / 네이처이앤티

목차

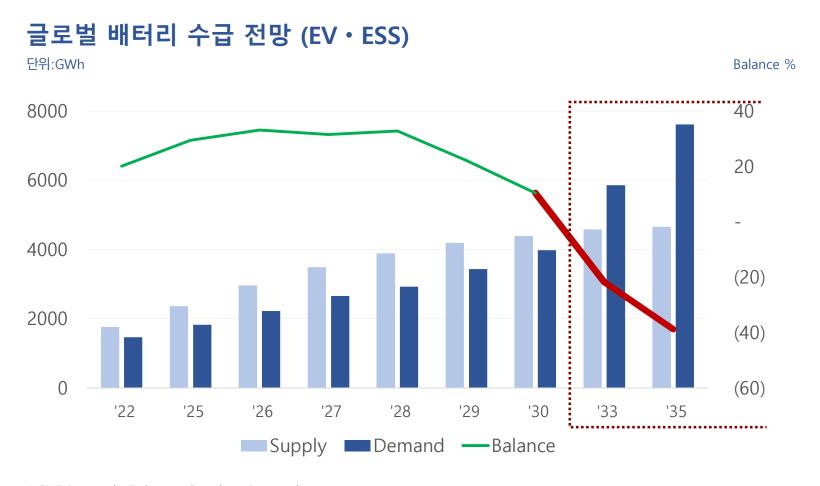
1. 시장현한 및 전망

배터리

폐배터리

2. 리싸이클링

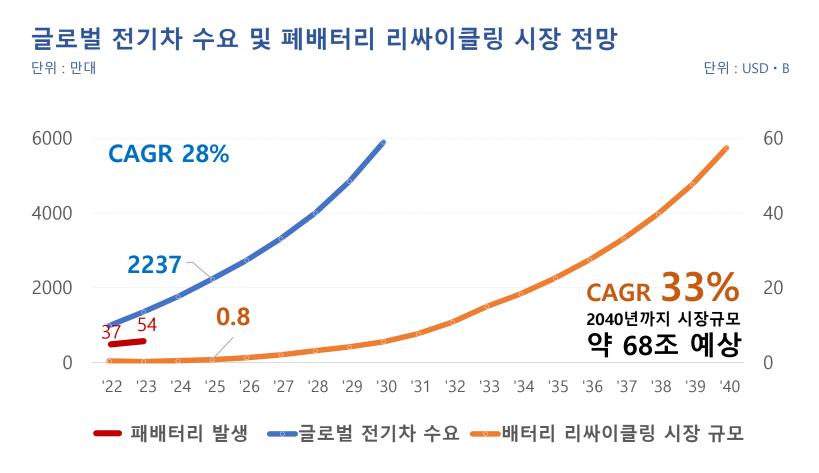
종래기술


경쟁력

차별성

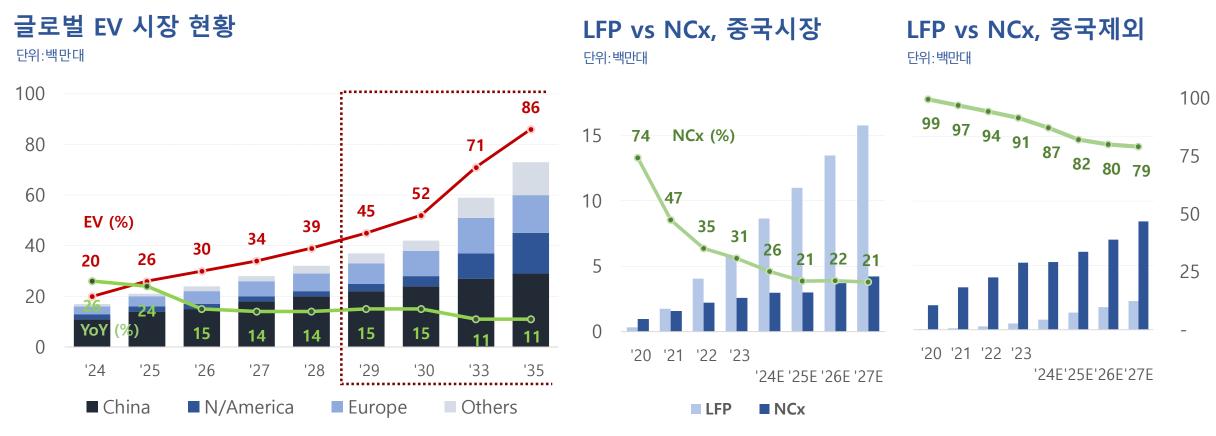
3.전략

시장현안 및 전망. 배터리


2030년까지 지속적으로 Over Supply, 2033부터 Shortage 전망

^{*} SNE Research (Balance : Supply ÷ Demand)

시장현안 및 전망. 폐배터리

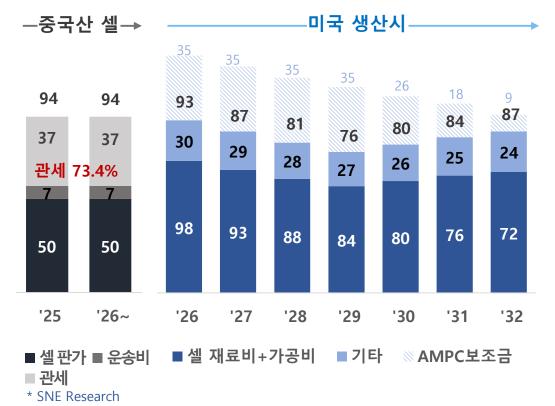

*출처-1 : 2021.1H Global 전기자동차 시장 및 Battery 수급 전망 (2021.3., SNE Research) *출처-2 : IEA (에너지 GWh = 폐기량 Ton × 에너지밀도 230Wh/Kg ÷ 109)

시장현안 및 전망. 폐배터리 원료중 NCx

전기차 시장 연평균 15% 성장, '29년 비중국 시장규모 역전, '35년 73백만대, 전환율 86%

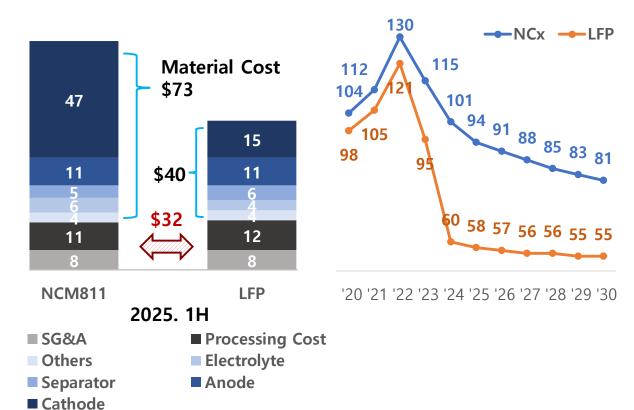
-> 유럽 '27년부터 가속화, 북미 '30년부터 고성장 진입

'25년 전기차 시장에서 NCx 비중은 중국 20%, 비중국 82%, 글로벌 42% 전망


^{*} SNE Research

시장현안 및 전망. 참고

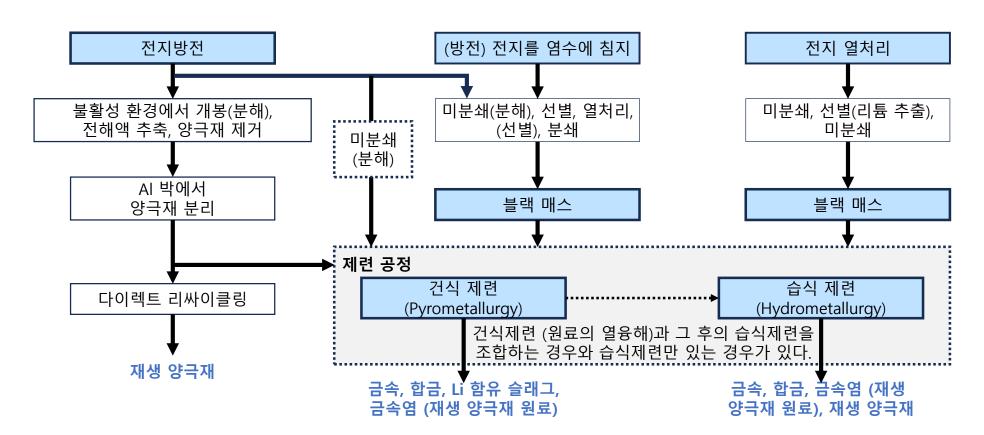
중국산 배터리 사용 규제 : K-BATTERY 현지 생산 체제 구축증, 셀 COST는 AMPC 보조금 감안시 '27년부터 중국산 대비 경쟁력 확보 가능
-> 리싸이클링도 현지 환경 규제에 맞는 기술 경쟁력 확보 및 가격 경쟁력 확보를 위한 혁신 필요 → 셀 재료비 + 가공비 매년 5% 절감
중국 배터리 공급 과잉이 지속되면서 LFP 판가 하락폭이 크며, 원가 이하인 \$58/kwh로 판매 중


배터리 COST 분석 (EV용 LFP 셀 기준)

단위: \$ / KWh

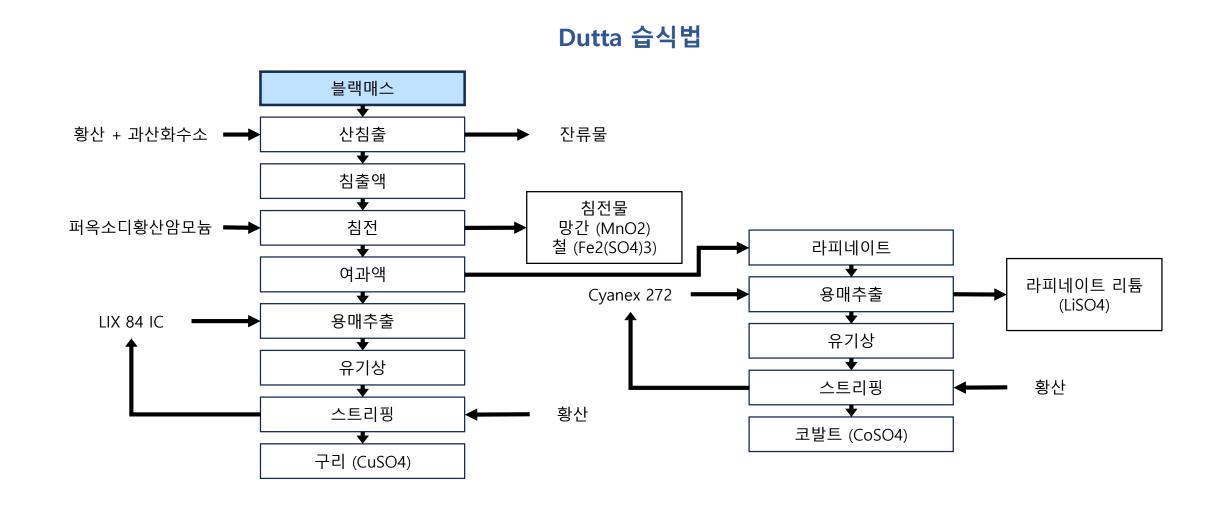
NCM811 vs LFP 비용구조 / NCx vs LFP 가격전망

단위: \$ / KWh



리싸이클링. 종래기술

양극재 재생에는 주로 세 가지 방법이 있다 : 다이렉트 리사이클링 법, 건식 침출 법, 습식 침출법

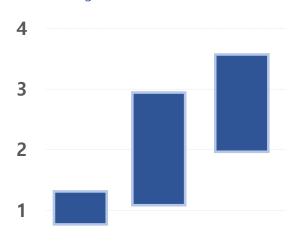

-> 양극재에 필수적인 리튬, 코발트, 니켈을 사용된 배터리에서 회수하기 위해서는, 분해 시 감전 사고를 방지하기 위한 방전 처리, 견고하게 패키징된 배터리의 해체, 잔류 전해액의 회수 및 무해화, 분해된 배터리 잔여물에서 양극재의 분리 및 회수와 같은 복잡한 전처리 공정이 필요.

배터리의 방전, 분해, 재생의 공정 개략 (J)

리싸이클링. 종래기술

세 가지 방법중 단독과 조합 등이 다양함.

리싸이클링. 경쟁력


중국, 가격・기술 경쟁력 우위 : 인건비・용매등 저렴, 풍부한 원재료, 산・학・연 협력强 신기술, 산업간 파이프 라인

일본, 리튬 배터리 최초 개발 • 양산 : 리싸이클링 원료 부족으로 산업 경쟁력 약화

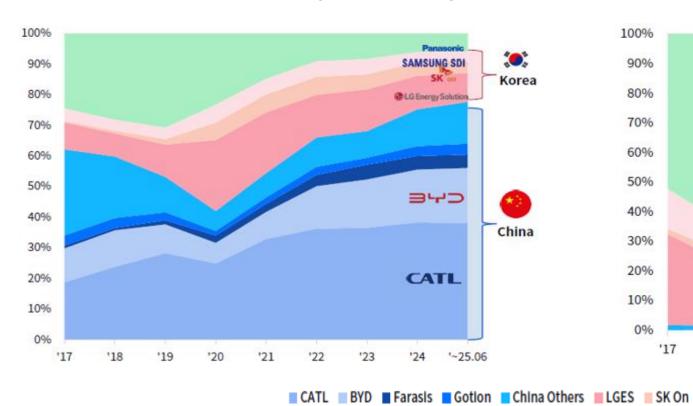
미구, 혁신 스타트업 중심 : 제조 밸류체인 약함

리싸이클링 원가 비교

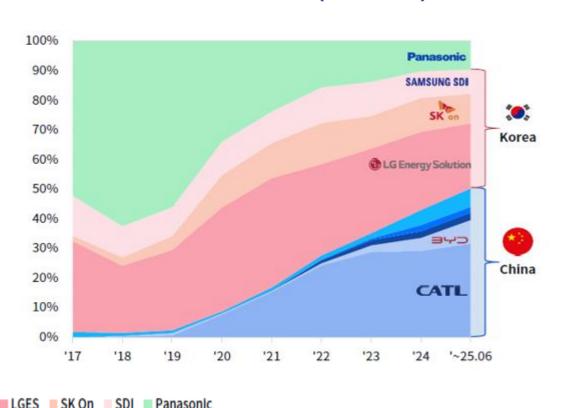
단위:USD · 1Kg

	항목		중국	한국			
공법		-	습식제련	습식제련			
공정 인건!	<u>-</u>	중국 대비	1.0	5.8			
전처리	가공비	중국 대비	1.0	2.5			
	방전법	-	전기-	.염수			
	분리법	-	수는	크리			
	BM회수률	%	85~90	80~90			
후처리	침출재	-	$H2SO4 + \alpha$	H2SO4			
	용매단가	중국 대비	1.0	1.7			
	공정시간	중국 대비	1.0	1.1			
	리튬 추출	_	고상 Li2CO3	고상 Li2CO3			
	불순물	-	공정수 재활용	구리 회수			
	용매추출	중국 대비	1.0	4.1			
	제품	-	액상	고상			

^{*} 근거: 중국 7개사 인터뷰 및 벤치마킹, 한국 3개사 벤치마킹, 일본 GS YUASA 리서치 자료, 미국 PNE社


리싸이클링. 경쟁력

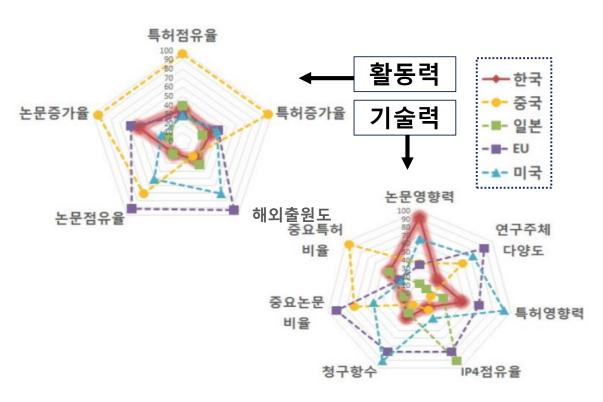
중국 배터리사의 점유율은 2025년 77.8%로 확대되며 압도적 우위 형성


-> 중국 리싸이클링 등록 (2025년 1H) : 약 28,000개

중국 제외 시장에서의 중구 배터리사가 2025년 상반기 48.2%로 상승추세, 한국은 38.3%에서 하락 추세

글로벌 배터리 시장 점유율 (2017~2025)

글로벌 배터리 시장 점유율 (중국제외)

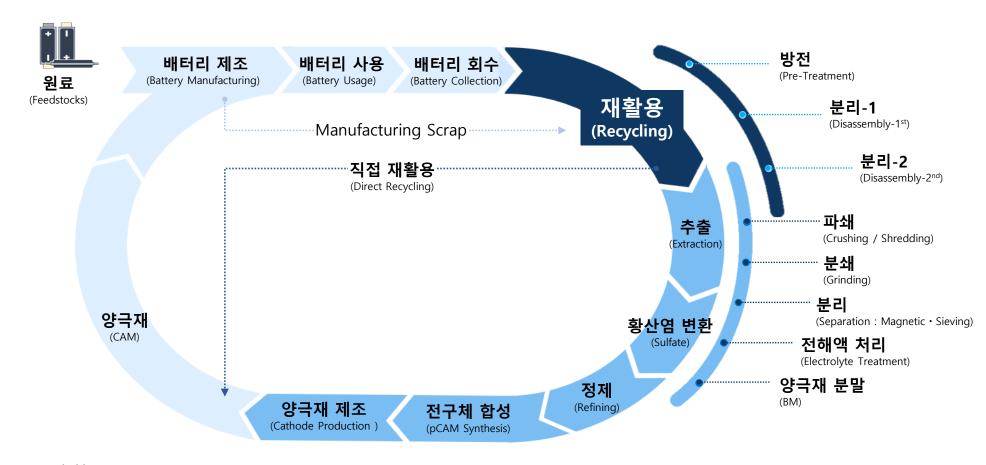


리싸이클링. 경쟁력

중국. 2020년 기술수준 평가 5위 → 현재는 ?

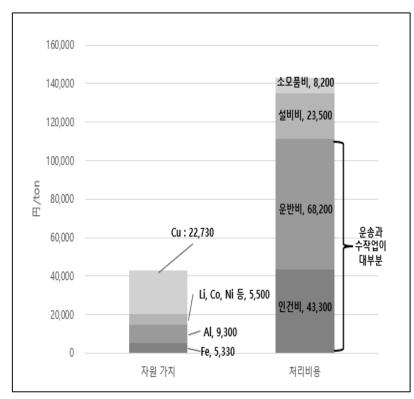
한국. 기술의 공공성 특성상 기술 실증 및 검증을 위한 인프라구축, 기관별 연구 역량 집중 및 연계체계 확보, 연구 데이터 및 자료의 공유 및 확산을 위한 플랫폼 구축의 부족으로 기술 격차가 발생하는 것으로 분석

논문/특허 기반 활동력 및 기술력 주요국별 상대적 위치 (2020년)


(참고) 폐배터리 재활용 관련 국내 기술 수준

- 최고기술 보유국(미국) 대비 국내 기술 수준은 81.1%이며, 기술격차는 3.7년으로 평가¹⁶
- 폐자원 분야(환경/기상분야 포함) 국가별 평가는 미국(100%), EU(99.2%), 일본(90.0%), 한국(81.1%), 중국 (75.5%) 순이며 한국은 최고기술 보유국인 미국 및 EU와 기술격차가 높은 것으로 분석

폐배터리	한국		중국		일본		Е	U	미국		
자원화 분야	'18	'20	'18	'20	'18	'20	'18	'20	'18	'20	
기술수준 (%)	76.6	81.1	71.4	75.5	90.1	90.0	98.7	99.2	100.0	100.0	
기술격차 (년)	4.1	3.7	4.9	4.6	1.9	2.0	0.3	0.3	0.0	0.0	
기술수준 그룹	추격	추격	추격	추격	선도	추격	선도	선도	최고	최고	


- 18년 대비 국내 기술수준은 4.5%p가 증가(76.6% → 81.1%)하고, 기술격차는 0.4년 감소(4.1년 → 3.7년)
- 논문 및 특허 등 정성 평가는 한국의 활동력은 폐자원 재활용 분야(환경·기상 분야 포함)의 논문 증가율(195.4%) 및 특허 점유율 (11.3%)은 주요 5개국 중 2위로 평가
 - 특허 증가율(14.4%)은 3위로 분석되었으며, 논문 영향력(9.3), 중요특허 비율(20.4%), 특허 청구항수(9.0)로 본 기술력은 주요 5개국 중 3위로 평가

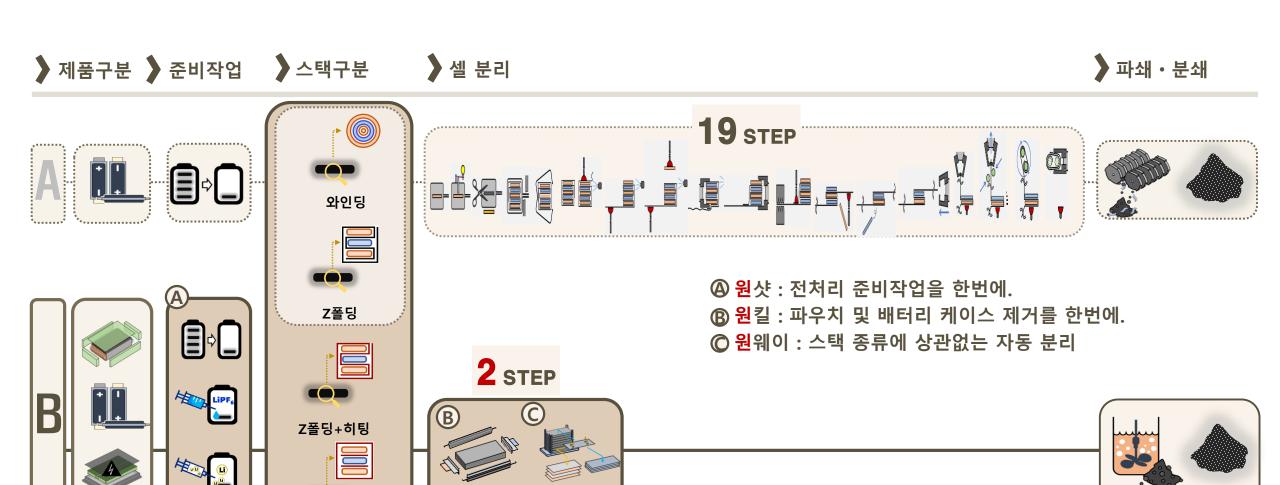
- * 출처: 과학기술정보통신부 (2020년 기술수준 평가 : 2021.3., 과학기술정보통신부)
- -> 각 평가지표 값은 원 계산값에 비교의 편의를 위해 각 지표당 최고점 100점 기준으로 환산한 값임(정규분포 적용)

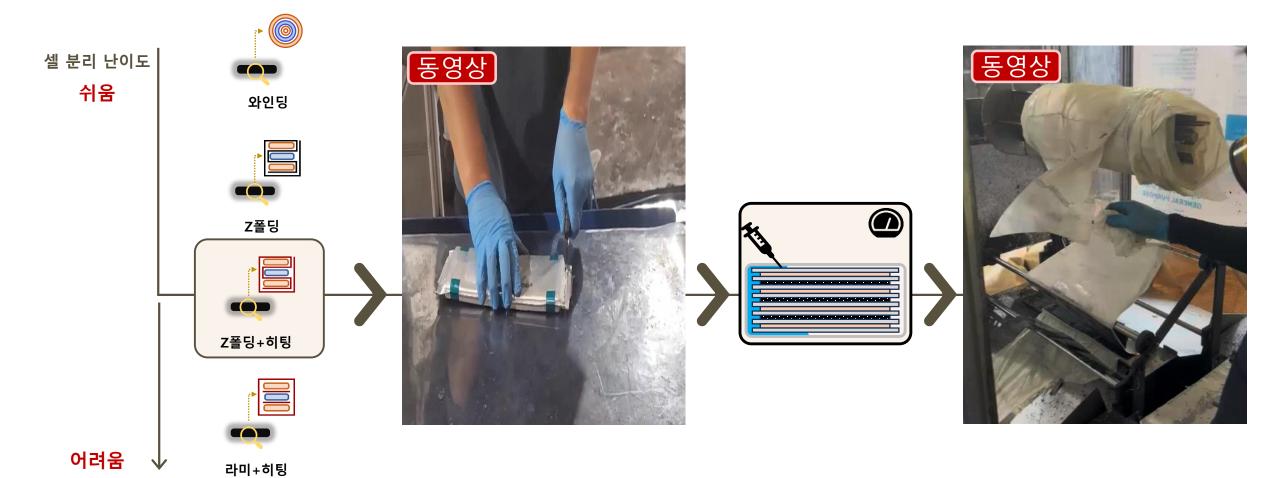
*출처 : Solarbuildermag.com

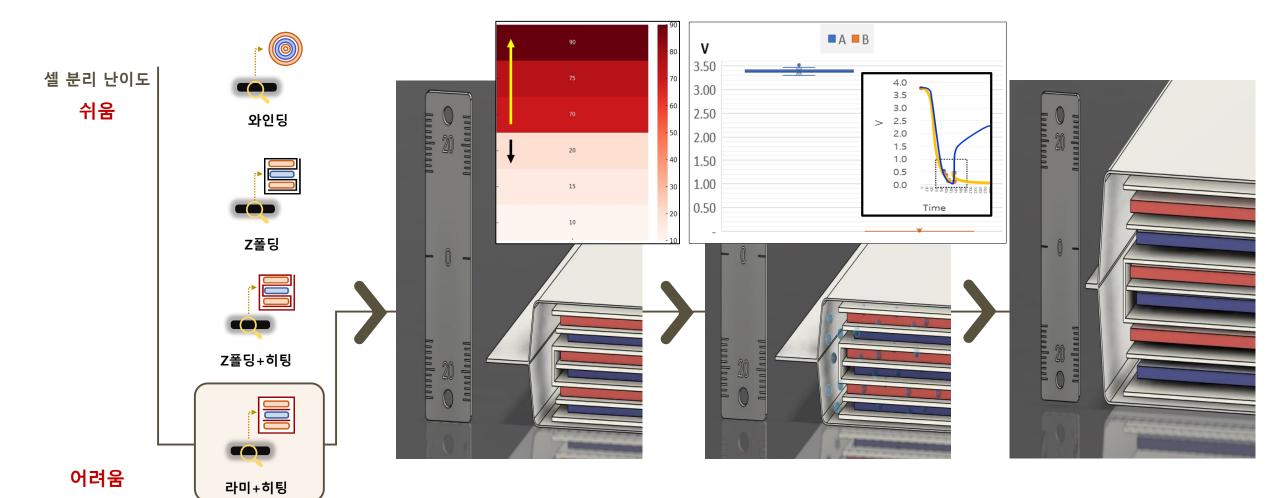
자원가치와 처리비용 추정 (일본)

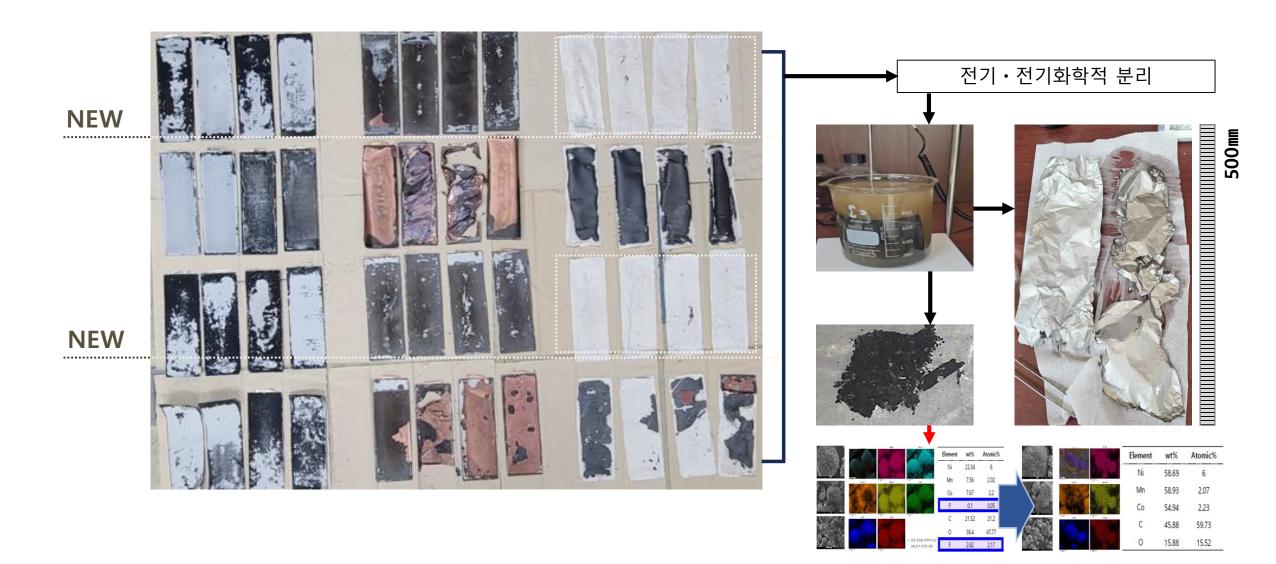
*출처 : Taiheiyo Cement Corp.

폐배터리 선별 (미국)

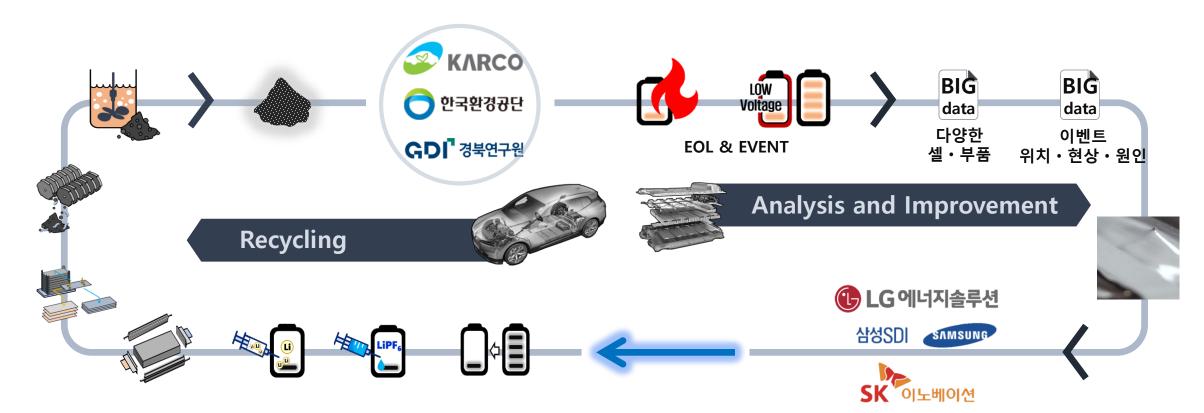

*출처 : Li-cycle社폐배터리 선별


도시 탄광



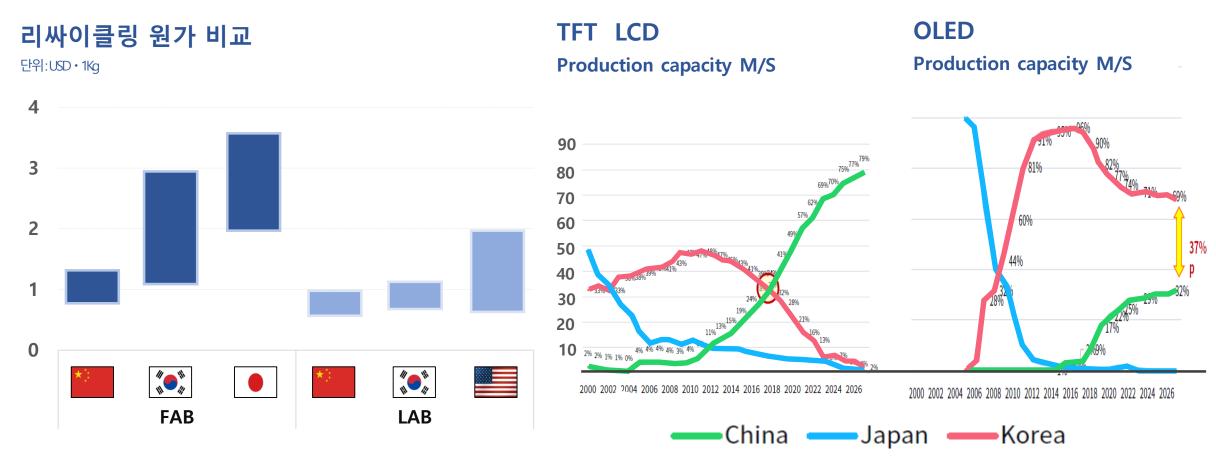

라미+히팅

전략. EU 배터리 규제의 일정표


EU 배터리 규제를 기회로 전환

-> 2031년말까지 재자원화율 리튬 80%, 코발트・니켈・구리 95% 달성

	이벤트	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036
제 7조 CFP	산출 방법등의 결정	2/18		2/18		2/18		-					
	성능 클래스 요건의 결정	2/18	8/18		8/18		8/18						
	최대값의 결정		8/18		2/18		2/18		2/18				
	선언 적용	2/18	2/18		8/18		8/18			,			
	성능 클래스 요건의 적용		8/18	8/18			2/18		2/18		ı		
	최대값 표시 의무화				2/18	2/18		8/18		8/18			
제 8조 재활용 소재	함유율 표시 의무화		8/18		T			1	1		ı		
	함유율 산출 방법 등의 결정				8/18					8/18			
	최소 함유율 의무화							8/18					8/18
제 10조	성능 최소값 의무화		2/18			1							
성능	성능 최소값의 결정			8/18	8/18								
	표시 요건의 결정	8/18		7									
제 13조	표시 요건의 강화		8/18							:	EV用		
표시요건	분류 표시ㆍ라벨 표시	8/18			1								
	│ QR 코드 표시ㆍ라벨 표시			2/18							산업용		
제 49조	DD 가이드라인 공고	2/18									LMT用		
DD	DD 의무화	8/18								:	외부스	케줄 포	함
제 71조	소재 회수율 등의 산출법 결정	2/18						1			벌칙구		
Recycling	최소 재활용 물질 함유율 의무화	12/31					12/31		1	•	<u> </u>	ᇿᇝ	-
Recovery	최소 소재 회수율 의무화			12/31 12/31									급망 실사
제 77조	BP 대상 물질의 선업 제도 결정		8/18		* CFP (Carbon Footp								
ВР	BP 의무화			2/18									


전략. 산·학·연

- 비즈니스 모델 개발
 - Umicore 폐배터리에서 원재료 회수 및 재활용하는 "폐쇄 루프 비즈니스 모델" → 환경부와 한국환경공단이 시범사업 운영하는 전국 4개 미래 폐자원 거점수거센터를 활용해 배터리의 입고, 성능평가, 보관, 매각을 대행을 넘어선 배터리 분석 및 빅데이터를 셀 제조사와 공유
- 해외 공동 물류 시스템
- K-과학자 마을 협업

전략. 경쟁력

일본 → 한국 → 중국, 단순 규모 경쟁이 아닌 과감한 신공법·안전·고효율 적용과 같은 기술적 초격차 전략을 강화하여, 중국의 추격을 뿌리치고 "LCD가 아닌 OLED의 길"을 가야 함 (중국, 이차전지 리싸이클링을 핵심산업 • 화이트리스트 관리)

^{*} 근거 : 중국 7개사 인터뷰 및 벤치마킹, 한국 3개사 벤치마킹, 일본 GS YUASA 리서치 자료, 미국 PNE社

감사합니다.

