

배터리순환경제와 물류의 역할

SE_{BANG} 세방(주)

윤일진 전략기획팀장

Contents

- 배터리 순환경제와 사용후배터리
- Ⅱ. 물류의 역할
- Ⅲ. 국내외 현황 및 관련 규제
- IV. 물류의 과제와 결론

(1) 전기차, 배터리순환경제, 사용후배터리

글로벌 전기차 배터리 및 폐배터리 재활용 시장 규모 전망

- ✓ 전기차 확산에 따라 글로벌 전기차 배터리 시장 규모는 2020년 37%씩 성장하여 2030년 3,364GWh까지 증가할 전망
- ✓ 이에 따라 글로벌 전기차 폐배터리 재활용 시장 규모도 2025년부터 연평균 33%씩 성장하여 2030년에는 574억달러 (약 68조원)을 상회할 것으로 전망됨.

배터리 라이프사이클로 본 배터리 순환경제

✓ 배터리 순환경제는 폐배터리내 금속을 추출하여 ①신규 배터리 제
 조에 활용 또는 판매(재활용)하거나 ②폐배터리를 기존 용도가 아닌
 다른 용도로 재사용하여 지속가능성을 추구하는 친환경 경제모델

(2) 배터리 순환경제의 핵심 이슈

배터리 순환경제 추진방향과 전략은 산업별로 다양하지만,

폐배터리 선점-회수-원료 추출-기술 개발-성능 진단-재활용/재사용 시장 진입 등 여전히 미해결 이슈 多

기업의 배터리 순환경제 대응방향과 핵심 이슈

[산업]

[배터리 순환경제 추진 방향]

모빌리티 (자동차제조)

- 전기차 시장에서 경쟁력 제고
- ESS 시장 진입을 통한 신성장동력 확보

이차 전지 제조

- 이차전지 소재 및 부품 안정적 공급망 및 가격 경쟁력 확보
- ESS 시장 내 경쟁력 제고

재활용

• 원재료에서 회유금속 회수율을 극대화하는 기술 개발 및 상용화

기타

• 기존 영위 사업에서 포트폴리오 확장 (신사업 추진)

[추진전략]

- ✓ 폐배터리에서 원료 추출 기술 개발
- ✓ 배터리 내 원료 추출 기술 업체 투자
- ✓ JV 기반 폐배터리 **재활용 기술 개발**
- ✓ **회수후** 발전용 ESS 활용사업 수행
- ✓ **개조후** 충전용/가정용 ESS 사업 추진
- ✓ 폐배터리 시장 니치마켓 공략

[핵심이슈]

Q1. 배터리 순환경제에서 주도권을 확보하기 위한 비즈니스 모델은?

Q2. 폐배터리를 어떻게 **선점(확보)**할 것인가?

Q3. 폐배터리 재활용 기술 경쟁 우위 방안은?

(1) 배터리순환경제와 물류의 역할

배터리의 "위험물" 특성 상 배터리순환경제 Cycle 내 물류는 핵심 역할 수행 일반물류와 하역/운송/보관 등 프로세스는 유사하지만, **안전 · 규제 · 리스크관리가 핵심 포인트**

1차 사용주기 "배터리물류"

- ✓ 1차 사용주기 물류의 핵심은 '안전 + 규제준수 + 품질유지 + 효율적 공급'
- ✓ 배터리의 특성상 화재 · 손상 · 법적리스크로 직결되므로
 제조 단계부터 최종 사용까지 전체 공급망 물류 전략 필수

2차 사용주기 "폐배터리 물류"

- ✓ 2차 사용주기 폐배터리 물류는 배터리 회수, 검사, 선별, 재배치까지 모든 과정에서 안전과 정보 관리가 핵심
- ✓ 1차와 달리 이미 사용된 배터리의 상태 불확실성 때문에 사고 위험이 높고, 물류과정에서 리스크 관리와 추적관리(traceability) 더욱 중요

(2) 일반물류 vs 배터리(위험물) 물류

"일반 물류"와 "배터리 물류(이차전지·리튬이온배터리)"는 기본적으로 운송·보관·하역 등 프로세스는 유사, 배터리의 위험물 성격 때문에 안전·규제준수·리스크 관리가 핵심 포인트

구분	일반물류	배터리 물류
취급 품목	비위험물 (식품, 의류, 가전 등)	<mark>위험물 분류</mark> (리튬이온 배터리: UN3480/3481등)
규제	상대적으로 단순	국제 위험물 규정(IMDG Code, ICAO/IATA DGR), 국내 유해화학물질관리법, 산업안전보건법 등 적용
포장	일반상자, 파렛트 등	UN 인증 포장재, 충격 방지, 불연성 자재 필요
운송	일반 화물차, 컨테이너 등	위험물 운송차량, 온습도 관리, 전용 컨테이너 필요
보관	상온, 일반, 냉장/냉동 창고	온습도 엄격 관리, 소화설비(메탈화재 대응), 방폭 설비 필요
보험 및 리스크 관리	일반화재 및 분실 위험	<mark>폭발, 화재 가능성</mark> 사고 시 피해 범위 크기 때문에 보험료 및 리스크 강화 필요
인력관리	일반 하역, 운송 인력	위험물 취급 교육, 전문 안전 관리 인력 필요
비용구조	상대적으로 저렴	안전 설비, 전용 패키징, 보험료 등 비용 상승
시장특성	범용성 높음, 경쟁 치열	성장 산업(전기차, ESS확산) → 특수 물류 시장 확대 중

/7p

(3) 폐배터리 관련 사고 사례

폐배터리 관리 소홀 S 배터리, 배상금 '3100만불' 물어줬다

재활용업체 제기한 소송서 거액 지급 합의

10/16/24 /n 최신뉴스

13 45 AA □

[인용] 애틀랜타 중앙일보, "폐배터리 관리 소홀 S사 배터리, 배상금 '3100만불' 물어줬다", 2024.10.16

- ▶ 폐배터리 관리 취약으로 인해 발생한 화재
- ▶ 제조사 공급망과 폐기물 처리 과정에 대한 규제 · 감시 · 내부통제 강화 必

조지아주 재활용업체-S배터리 대형화재 발생, 원인은 폐배터리

※사건개요

- '23.7월, 조지아주 재활용업체 대형 화재 발생
- S사 미국공장에서 나온 **리튬이온배터리셀(스크랩)이 허가되지 않은 재활용 센터에 혼입되어 배송**, 그 배터리들이 서로 접촉 · 합선(단락)으로 인한 열폭 주로 대형화재 발생

※ 피해 · 대응

- 재활용센터 전소, 인근 소방 자원 대량 소모, 지역사회 및 업체 피해
- 조지아주 환경·안전 당국 조사 결과 기반, S사 측에 과태료·벌금 부과 및 민형사 소송 → 주정부 조사·조치, OSHA*·노동부 등 연방기관 조사 병행 *OSHA(Occupational Safety and Health Administration): 미국노동부산하연방기관으로산업안전 보건법 (OSH Act) 근거로 설립

※ 법적결과 · 합의

- 재활용 업체와 S사는 약 3,100만달러 규모로 합의(2024년)
- 주(관련 기관)가 S사에 대해 조사 후 벌금·과태료 부과
- OSHA 등은 별도로 작업장 · 직원 안전 위반 사항으로 벌금 · 시정명령

(1) 국제표준: UN3480, UN3481

UN은 국제운송(항공, 해상, 육상)에서 <u>위험물신고 및 운송 조건을 명확하게 하기 위해 위험물 분류 체계</u>에 따라 번호 부여, 그 중 <mark>리튬이온배터리</mark>를 지칭하는 코드는 **UN3480, UN3481**

UN3480, UN3481

UN3480: 리튬이온배터리 단독

- 셀 또는 배터리 팩 단독으로 운송되는 경우
- 화재 위험이 크기 때문에 규제가 가장 엄격함 특히 항공 운송 시 엄격하게 제한됨 (IATA DGR)
- UN 인증 포장재, 위험물 라벨, 화재대응장치 필수

UN3481: 기기 내장/함께 포장된 리튬이온배터리

- 노트북, 스마트폰에 내장된 리튬이온배터리 또는 예비 배터리가 노트북 박스 안에 동봉된 경우
- 기기에 내장되면 발화가능성이 상대적으로 줄어 규제 완화
- 포장/라벨링은 상대적으로 간소함

배터리관련 주요 UN번호

UIN번호	설명	예시
UN3480	리튬이온 배터리 단독 운송	EV배터리, ESS배터리팩
UN3481	기기 내장/함께 포장된 리튬이온 배터리	노트북, 스마트폰, 드론
UN3090	리튬금속 배터리 단독 운송 (1차전지, 충전불가)	시계용 코인셀, 군용 배터리
UN3091	기기 내장/함께 포장된 리튬금속 배터리	의료기기, 군용 장비, 센서
UN3028	알칼리 건전지 등	AA, AAA 알칼리 배터리
UN3496	니켈 수소 배터리	충전식 소형 배터리
UN2800	비유출형 납축전지	UPS용 VRLA 배터리
UN2794	산성 전해액 납축전지	자동차용 납축전지
UN2795	알칼리 전해액 납축전지	특수 산업용 배터리

(1) 국제표준: IMDG Code (해상)

IMDG Code (International Maritime Dangerous Goods Code)

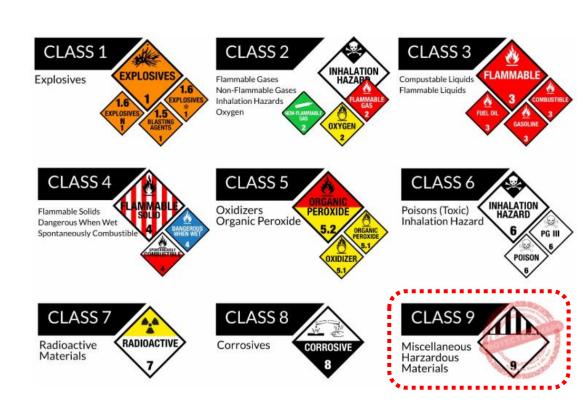
- 주관: 국제해사기구(IMO, International Maritime Organization)
- 목적: 해상 운송 중 발생할 수 있는 폭발, 화재, 누출, 환경오염 등의 위험을 줄이기 위해 위험물 분류·포장·표시·운송 방법을 표준화
- 법적 지위: SOLAS 협약(해상인명안전협약)의 일환으로 각 회원국 의무 적용
- 주요 내용

(1) 위험물 분류

구분	종류
Class 1	폭발물
Class 2	가스
Class 3	인화성 액체
Class 4	인화성 고체
Class 5	산화성 물질 · 유기과산화물
Class 6	독성·감염성 물질
Class 7	방사성 물질
Class 8	부식성 물질
Class 9	기타 위험물

*리튬이온/리튬메탈배터리는 Class9 기타위험물

(2) 포장 및 라벨링 규정


- UN번호 표시
- UN인증 포장재 사용
- 위험물 라벨 부착

(3) 운송 문서 및 적재 규정

- 선적서류 의무 작성
- 선박 내 위험물 적재 위치, 분리규칙 및 화재 대응 장비 확보 의무

IMDG Code 위험물 표시 라벨

(1) 국제표준: ICAO/IATA DGR (항공)

항공 운송 과정에서 발생할 수 있는 화재 · 폭발 · 독성 등 위험을 예방하기 위해, 국제적으로는 ICAO TI와 이를 실무적으로 적용한 IATA DGR이 전 세계 표준으로 활용됨

ICAO TI (국제민간항공기구) / IATA DGR (국제항공운송협회)

- 리튬이온(UN3480, UN3481), 리튬메탈(UN3090, UN3091) 모두 항공 운송 시 Class 9 위험물로 분류
- 포장, 라벨링 규정 엄격하며, 사고 발생 시 화재 진압이 어렵기 때문에 항공사가 자체적으로 더 강화된 제한을 두는 경우도 많음

구분	ICAO	IATA
명칭	국제민간항공기구 (International Civil Aviation Organization)	국제항공운송협회 (International Air Transport Association)
주체	UN 산하 전문기구 (국제항공운송의 안전규정 제정 담당)	전 세계 항공사
규정	위험물 운송에 관한 기본 규칙 (TI, Technical Instructions) 발행	ICAO 규정 기반, 세부적이고 실무적인 규정집 (IATA DGR, Dangerous Goods Regulations) 발행 *항공사별 세부 요구사항 반영
특징	 ✓ 국제항공위험물 운송의 법적 기준 정립 (법적 효력 有) ✓ 전 세계 항공 위험물 운송의 국제 표준 근거 ✓ ICAO 회원국은 국내 항공법령으로 의무 반영 	 ✓ 항공사들이 실제 사용하는 위험물 운송 매뉴얼(실무지침) ✓ 매년 개정되는 매뉴얼은 항공사/포워더/물류사들이 참고 ✓ IATA회원사는 실무 매뉴얼이므로 더 엄격하게 적용 가능

^{*}ICAO 회원국은 총 193개국, 대한민국은 1952년 12월 가입, IATA 회원사는 전 세계적으로 약 350여개 항공사

(2) 해외 현황(배터리) - 관련 법, 제도

EU는 **지속가능성·추적성**, 미국은 **운송안전**, 일본은 **소비자제품 안전** 중심으로 접근

국제 배터리물류 규제 비교

구분	EU	미국	일본
규제	Battery Regulation 2023/1542	HMR(위험물규정, Hazardous Materials Regulation)	DENAN법 - PSE인증 (제품안전인증제도)
특징	- 공급망 전반(제조~물류~재활용) <mark>통합 관리</mark>	운송 안전 및 교육 중심 규제 강화국제일관성: ICAO/IATA 개정사항 반영	- 소비자 제품 안전 중심, 국제 운송 규정과 병행 적용 - PSE요건 미충족 시, 일본 내 수입 및 유통 금지
법제화 상태	 2023년 제정, 2024년 발효, 단계별 의무 강화 기존 배터리 · 축전지 지침(2006/66/EC) 대체 2025년 완전 폐지/전환 목표 	- 연방위험물 규정 (HMR, 49CFR Parts 171- 180)에 근거, PHMSA 지침 운영	- 전기용품안전법(DENAN) 및 PSE인증 체계 - METI 고시·가이드라인으로 운영
적용 범위	- 모든 배터리 (휴대용, SLI, LMT, EV, 산업용)	- 리튬이온/리튬메탈 배터리 운송 전반 (항공/해상/도로)	- 2차 리튬이온배터리 포함 전기 · 전자제품 (소비자 · 산업용)
물류/운송 관련	- UN38.3 · 포장 · 표시 요건 반영 - 2027년 부 Battery Passport 도입하여 추적성 관리 강화	 위험물 포장 · 라벨 · 충전상태(SOC) 제한 손상 · 결함 · 배터리 운송 규제 위험물 교육 의무화 	 국제수송은 UN38.3 / ICAO / IATA 준용 제품 시험 · 안전 기준 (JIS 등 적용) PSE 인증 통한 안전성 확보
주요내용	디지털배터리여권 도입, 탄소발자국 공개재활용 원료 의무 사용공급망 투명성 기준 준수	- 일부 의료 · 특수 배터리 예외 *미국은 예외조항 多 - 손상 배터리 운송 시 별도 포장 규정	- 과충전·온도·고충전률 시험 강화 - PSE 마크 의무화

^{*}HMR: DOT(미국교통부) 산하 PHMSA(파이프라인·위험물 안전청)에서 제정 및 집행

^{*}DENAN&PSE: METI(일본경제산업성, Ministry of Economy, Trade and Industry) 소관, DENAN법(전기전자제품의 소비자 안전 확보 법)에 따라 시행되는 PSE(제품안전인증제도, Product Safety Electrical Appliance & Material)

(2) 해외 현황(폐배터리) - EU

EU는 세계 최초로 배터리 전 주기(생산-사용-폐기-재활용) 포괄하는 통합 규정(Regulation) 제정 생산자 책임 재활용 제도 기반으로 제조사에 강력한 의무 부과

EU배터리 규제 및 생산자 책임(EPR) 제도

구분	내용		
법적근거	- EU배터리 규제(Regulation (EU) 2023/1542), '23.8월 발효		
주요내용	 규제 대상: 휴대용(소형, 전자제품용), 자동차(12V납축전지 포함), 산업용(ESS, 대형장치용), 전기차(EV) 배터리 회수·재활용목표부여 (1) 휴대용 배터리 회수: 45%('23년) → 63%('27년) → 73%('30년) (2) 재활용 효율목표: 리튬 50%('27년) → 80%('31년), 코발트/구리/니켈 90%('27년) → 95%('31년) 자활용원료의무사용: 신규 배터리에 재활용 금속원료 의무 비율 적용 구분 코발트 리튬 니켈 '31년목표 16% 6% 6% 12% 15% 배터리 여권(Battery Passport), 26년 부 적용 배터리 성분, 탄소발자국, 재활용 원료 비율, 사용 이력 등 정보 포함 블록체인 기반 디지털 데이터 관리를 통해 투명성, 추적성 강화 		
운영체계	- EU 각국 생산자책임기구(PRO) 설립 및 운영 - 생산자는 PRO 가입하여 비용 분담, 자체 회수 및 재활용 시스템 구축 - 유럽집행위원회(EC)가 전체 규제 집행과 모니터링		

EU 배터리 물류 중심 사례

DHL - 배터리 전문 물류 프로세스 운영

- ✓ 전기차 배터리와 에너지 저장장치를 위해 전용 포장,온도/충격 모니터링, 위험물운송규정 프로세스 준수
- ✓ 중국제조업체→유럽으로 200개 BESS 컨테이너를통합물류 솔루션으로 배송 시간 단축 및 안전 확보
- ✓ 위험물 인증, 추적시스템, 보험과 재고 관리 통합

볼보/테슬라 - 유럽 내 배터리 분해 허브

- ✓ 완성차 제조사가 배터리 유럽 허브에 집결→ 각 공장 및 서비스 센터로 분배
- ✓ 안전·규제 준수 중심 물류, 리드타임 최소화,긴급 배터리 교체용 재고 관리 등이 특징

(2) 해외 현황(폐배터리) - 미국

미국은 EU와 달리 연방 단일 규정 부재, 대신 주별 · 민간 중심 제도 운영

<u>자동차 OEM사 주도, 민간 재활용 업체와의 파트너십 통해 폐배터리 자체 회수 및 재활용 프로그램 운영</u>

미국 폐배터리 Recycle 제도: 유형별 분산형, 주체별 혼합형 체계

구분	내용
법적근거	- 연방차원 • 환경보호청(EPA): 배터리를 유해폐기물·자원 회수 대상으로 관리 • 교통부(DOT) / 위험물안전청(PHMSA): 배터리 운송 안전규제 관리 - 주 차원: 주별 배터리 회수·재활용 관련 EPR 법률 도입(CA, NY, MN 등)
운영구조	 - 납축전지 (Lead-acid battery) → 법적 강제 (EPR 의무화) • 새 납축전지 판매 시, 소비자 폐배터리 반납 의무화, 재활용률 99% ↑ - 소형충전식 배터리 (리튬이온, NiMH, NiCd 등) → 민간/주별 EPR • 연방차원 의무 없음, 민간 주도 프로그램(Call2Recycle)* 중심 - EV 및 대형 리튬이온배터리 → DOE 지원, OEM 주도 • 연방차원 통합 규정 부재, DOE(에너지부) 기술개발 및 인프라 지원 • OEM(테슬라, GM, 포드 등) 자체 회수 · 재활용 프로그램 운영 (Redwood Materials 등 민간 재활용 업체와 파트너십)
최근동향	- 2022년 <mark>인플레이션 감축법(IRA)</mark> 통해 EV배터리 원재료 공급망 안정화 차원에서 재활용 소재 사용 시 세제 혜택 부여 및 보조금 지원

- 연방 차원의 배터리 재활용 법제화 논의 중 (EU모델 벤치마킹)

미국 배터리 물류 중심 시례

Call2Recycle - 배터리수거 민간 단체

- ✓ 배터리 제조사들이 모여 만든 비영리 PRO
- ✓ 미국 전역과 캐나다에서 운영 중, 300개 이상 회원사
- ✓ 전자제품 매장, 지자체 제휴 수거 거점 1만6천개 운영

FedEx

FedEx - 전기차 배터리 운송

- ✓ 리튬이온배터리 전용 운송 프로세스 구축
- ✓ 항공 및 육상 운송 시 화재 위험 관리, 적재 제한, 온도/충격 모니터링, 운송 트래킹

블루워터 배터리 로지스틱스 - 리튬배터리 재사용

- ✓ 리튬배터리를 재사용하여 비용 절감과 지속 가능성 달성
- ✓ 배터리 회수 → 창고 집결 → 테스트/재사용 → 재배포
- ✓ 운송비 절감, 재사용률 증가, 환경 영향 최소화

[출처] call2recycle 공식홈페이지 (https://www.call2recycle.org/) / FedEx Lithium Batteries & Cells Shipping Guid Bluewater 공식홈페이지 (https://www.bluewaterbattery.com

(2) 해외 현황(폐배터리) - 일본

일본은 소비자가 아닌 생산자(제조·수입사)가 비용 부담하는 "생산자 책임 재활용 제도(EPR)" 도입하여 운영 주로 소비자 중심의 소형 충전식 이차전지 대상이지만, 최근 자동차용 대형 배터리(EV·ESS)까지 확대 적용 논의 중

일본 배터리 순환경제: 생산자 책임 재활용 제도

구분	내용
배경	- 1990년대 이후 순환형 사회 구축 정책에 따라 배터리 포함 특정 폐제품 의 회수·재활용제도를 생산자 책임(EPR) 기반으로 도입
법적근거	 자원유효이용촉진법에 따라 배터리(소형 충전식 이차전지)를 특정 재사용·재활용 촉진 제품 지정, 제조자·수입자에게 회수·재활용 의무 부여 폐기물처리법에 따라 <u>폐배터리 적정 수거·처리 근거 마련</u>
주요내용	 대상품목: 소형 충전식 배터리, 가정용 전자기기 내장 배터리 등 생산자책임: 배터리 제조사 · 수입자가 회수 및 재활용 비용 부담 회수 경로: 지자체 수거함, 편의점 등 통해 지정 재활용 사업자에게 이송 재활용 체계: 민간 협력단체인 JBRC(Japan Battery Recycling Center)를 통해 배터리 제조 및 수입사 회원사가 비용 분담하여 전국 2 만개 이상 수거 거점 운영 → 회수된 배터리 재활용
최근동향	 EV, ESS 확산에 따라 대형 배터리(자동차용)까지 책임 확대 논의 중 METI, '22년 이후 자동차용 리튬이온배터리 리사이클 가이드라인 발표 EU 배터리 규제 영향을 받아 일본도 추적성 및 재활용 의무 강화 검토 중

일본 배터리 물류 중심 시례

JBRC - 폐배터리수거 비영리 사단법인

- ✓ 배터리 제조·수입사 300여 개 회원사(파나소닉, 소니, 삼성·LG 일본법인 등) 참여로 이루어진 비영리 사단법인
- ✓ 회원사가 비용 분담, JBRC가수가 및 재활용 체계 운영
- ✓ 현재 일본 내 2만여 개 수거 거점 구축 (편의점, 지자체 센터)

TOYOTA

- ✓ EV/하이브리드 배터리를 위한 공장 간 물류, 서비스센터 배포, 재사용 배터리 회수 통합 관리
- ✓ 안전규제 준수, 재고모니터링, 실시간배송 추적, 재사용 배터리 재분배가 특징

(3) 국내 현황(배터리) – 관련 법, 제도

국내에서 배터리는 <u>위험물과 유해화학물질의 중간 성격</u>에 해당하며, 물류관점에서 배터리 자체에 대한 규정은 미비한 상황 취급에 관한 법은 **유해화학물질관리법(화관법)**과 **위험물안전관리법**, 근로자 안전은 **산업안전보건법**에 해당

국내 배터리물류 관련 법규 비교

구분	유해화학물질관리법(화관법)	위험물안전관리법	산업안전보건법	운송관련규제
적용대상	배터리 내 유해화학물질 포함 여부 (리튬, 전해액, 유기용매 등)	폭발 · 화재 위험 물질 포함 배터리	배터리 제조, 조립, 충전, 분해, 재활용, 보관, 운송 과정 중 작업자 안전 확보	도로, 철도, 항공, 해상 운송 시 위험물
특징	- 배터리 성분 내 유해화학물질 중심	- 폭발·화재 위험 중심	- 근로자 안전 및 사고 예방 중심	- 국제규정 기반 운송프로세스 운영
주요요구사항	제조 · 수입 시 화학물질 신고안전자료(MSDS) 비치취급 · 저장 시설 안전 관리	위험물 종류 · 등급 분류저장 · 보관 시설 안전기준 준수위험물 안전관리자 지정	위험성평가 실시작업자 안전교육 및 보호구 착용 의무작업장 안전관리 시설 설치 및 설비	운송용기 및 포장 기준 준수운송자 위험물 안전교육 필수운송문서 작성
표시/리벨링	- 유해화학물질 포함 배터리 라벨링 - 독성·인화성·산화성 표시	- 위험물 등급 라벨 부착 - 취급 주의 표시	- 배터리 저장·작업장에 위험물 라벨 부착	- UN번호, Class표시 - 항공/해상 국제규정 (ICAO/IATA, IMDG) 준수
사고대응	- 누출, 화재, 노출 시 보고 및 긴급 조치 계획	- 화재·폭발 발생 시 사고보고 의무	- 화재·누출 등 사고 대비 비상조치계 획 수립	- 운송 중 사고 대응 계획 마련 및 관련 기관 통보
폐기/재활용	- 유해화학물질 포함 배터리 별도 처리	- 위험물 폐기 규정 준수		- 운송 종료 후 안전한 처리 또는 재활용

(3) 국내 현황(폐배터리) – 관련 법, 제도

국내에서 폐배터리(특히 이차전지, 전기차 배터리 등) 관련 법·제도는 최근 몇 년간 급격히 정비되고 있는 상황 통합배터리법이나 (폐)배터리 전용 법규/제도는 없지만 **폐기물, 자원순환, 화학물질/위험물 등 여러 분야의 법령 교차 적용**

국내 폐배터리 관련 법

구분	내용
지원재활용법	전기·전자제품, 자동차 등 일부 품목에 대해 EPR 제도 규정전기차 배터리는 단계적으로 EPR 의무화 논의 중
지원순환기본법	 자원의 효율적 이용과 순환경제 실현을 목표 일정 규모 사업장 순환자원 인정 제도, 순환자원 이용 의무 적용
폐기물관리법	폐배터리를 사업장 폐기물 또는 지정폐기물(유해폐기물)로 관리전기차 폐배터리는 통상 지정폐기물로 분류되어 허가받은 수집/ 운반/처리업체만 취급 가능
자동차관리법 /전기자동차법	- 전기차 제조·수입사의 폐차 시 배터리 반납·회수 의무 근거 마련 - 지자체 주도로 전기차 폐배터리 회수센터 설치 및 운영
화학물질관리법 /위험물안전관리법	- 폐배터리를 운반·보관 시, 유해화학물질/위험물 취급 규정 적용- 리튬이온배터리는 폭발/화재 위험으로 운송·보관 안전기준 적용

관계 부처 및 주요 제도/정책

※ 관계 부처 역할

- 환경부: 폐기물 관리, 회수센터 운영, 재활용 제도화 주도
- 산업통상자원부: 배터리 산업 정책, 재사용·재활용 기술개발, ESS 실증
- 국토교통부: 자동차관리법을 통한 회수 의무 기반 마련
- 지자체: 실제 폐배터리 수거·보관센터 운영

※ 폐배터리 관련 주요 제도 및 정책

구분	특징
전기차 폐배터리 회수 · 재활용 체계 (환경부 · 산업부)	 전기차 폐차 시, 배터리는 제조사/수입사 → 지자체 반납 지자체별 폐배터리 보관센터 설치·운영 (제주, 전남, 경기 등) 회수 배터리 재사용(ESS), 재활용(원재료 추출) 사업 연계
EPR확대논의 (환경부)	현재는 가전 · 휴대폰용 소형 배터리 중심EV대형 배터리까지 EPR 확대 논의 진행 중
K-배터리 순환경제 구축 전략 (정부, 2021~)	- 배터리 전주기(생산-사용-수거-재활용) 관리 체계 구축 - 핵심 금속 회수율 90% ↑, 20% ↑ 재활용 공급망 확보 목표 ⇒ 배터리 산업 경쟁력 강화 + 자원 안보 확보 + ESG 경영 대응

(3) 국내 현황(폐배터리) - 사례

국내 폐배터리 시장은 지역 자원 산업단지 및 인프라를 활용하여 <u>실증/시범 사업 운영 다수</u> 폐배터리 재사용 및 재활용은 <u>기업 중심 투자 · 사업 초기 단계</u>, 재제조 및 성능평가는 현재 초기 연구 · 표준화 단계

정책 기반 폐배터리 회수 · 재활용 현황

권역별 거점 수거센터 (환경부)

- ✓ 폐배터리 회수 · 재활용 지원을 위해 미래폐자원 거점수거 4개 센터 운영 (2022)통해 유통 기반 마련
- ✓ 수도권(경기 시흥), 충청권(충남 홍성),호남권(전북 정읍), 영남권(대구)

제주 전기차 배터리 산업화 센터 (산업통상자원부)

- ✓ 폐배터리 수거, 성능진단, 등급 분류,활용 분야 발굴 등 연구/기술 지원 센터
- ✓ 국내 최초의 '사용 후 전기차 배터리 전 주기 체계' 구축 센터

국내 지역 및 민간 기업 사례

SK에코플랜트 & SK온

- ✓ 아파트 건설 현장에 전기차 폐배터리 재활 용한 에너지 저장장치(ESS) 기반 전력 공급시설 구축
- ✓ 국내 건설현장 ESS 활용 첫 사례

포스코홀딩스&포스코HY클린메탈

- ✓ 전남 광양 율촌산업단지 내 이차전지 리사 이클링 1공장 준공(2023)
- ✓ 폐배터리에서 리튬, 니켈, 코발트 등 유가 금속 회수
- ✓ 공정 중 발생하는 구리, 황산나트륨 등 부 산물 회수도 가능

(1) 물류의 과제 - 보관

폐배터리 보관은 단순 "창고관리"가 아니라, 위험물 보관시설의 수준의 안전규제 적용 국내는 아직 배터리 전용 보관 법규 미비, 화관법/폐기물관리법 준용하는 수준으로 선진국 사례 벤치마킹하여 선제대응 필요

폐배터리 보관 물류센터 규제 및 안전설비


- 폐배터리는 대부분 리튬이온배터리로, 화재·폭발·누액 가능성이 있어서 위험물안전관리법, 화학물질관리법, 국제규정에서 **위험물로 분류**됨
 - ⇒ 물류센터에서 단순 보관이 아닌 **위험물 전용 창고 및 안전설비 필수**

※국내주요규제

구분	특징
화학물질관리법(화관법)	- 일정량 이상 보관 시, 유해화학물질 영업허가/신고 대상 - 유해화학물질 취급시설 기준 준수 必
위험물안전관리법	 리튬이온배터리는 '위험물 제4류(인화성 고체·액체)' 취급 대상에 유사하게 적용 일정 규모 이상 보관 시 위험물 저장소 시설 기준 충족 必
폐기물관리법	- 폐배터리는 지정폐기물(유해폐기물)로 분류 - 지정폐기물 보관시설 기준 준수 必

^{*}추가) 국제 규정

미래폐지원 (전기차배터리) 지원 순환도

[출처] 프레시안, "영남권 미래폐자원 거점수거센터 대구 성서공단 확정, 9월부터 시범운영…", 2021.08.30, 기사 내 도표 인용 및 재구성

⁻ UN코드에 따라 포장/라벨 규정 준수, 수송 및 보관 시 위험물 규정에 따라 분리보관 · 불연성 포장재 · 환기설비 의무화, 창고 작업자 위험물 취급 교육 필수 등

(1) 물류의 과제 - 보관

세방㈜ 완주산업단지 복합물류센터

일반 현황

명칭	세방㈜완주복합물류센터
위치	전라북도 완주군 봉동읍 첨단산업1로 171 (완주테크노밸리 2단지)
준공일	2025년 7월
부지 면적	41,467㎡ (12,600평)
	복합물류센터 (위험물창고+일반상온창고)

창고면적 보관능력 보관화물 300평 246PLT 위험물 1,2,3류 / 유해화학물질 300평 242PLT 위험물 1,6류 / 유해화학물질 300평 1,387PLT 위험물 4류 / 유해화학물질 위험물 300평 1,387PLT 위험물 4류 / 유해화학물질 창고 600평 3,080PLT 위험물 2,4류 / 유해화학물질 센터규모 옥외 415평 200TEU 위험물 2,4류 / 유해화학물질 ※소화시설: 각창고별포(분말)소화 계 2,215평 설비, 자동화재탐지설비, 소화기 비치 1층 2,862평 5,716PLT 일반화물 2,219평 2층 3층 (부대시설) (상온) ※스프링클러설비, 자동화재탐지설비, 5,081평 5,716PLT 계 옥내소화전, 비상방송설비 등

※ "위험물안전관리법 시행규칙" 별표4에 따라 1개 저장소마다 허용 저장량이 제한됨.

※ "위험물안전관리법 시행규칙" 별표5에 따라 위험물을 저장하는 창고는 **위험물분류에 따라 1,000 ㎡** (약 300평), 2,000 ㎡ (약 600평) 으로 **위험물의 저장을 전용으로 하는 독립된 건축물**이어야 함.

(1) 물류의 과제 - 보관

20p

(1) 물류의 과제 - 운송

배터리물류 운송의 키워드는 **안전&환경**, 배터리 순환경제의 목표는 <mark>한정된 자원의 합리적인 활용과 기후 변화 대응</mark> 배터리 전과정평가(**LCA**)를 통해 운송 과정에서 온실가스 배출 관리 전략 및 탄소 중립, ESG경영 목표 달성 必

LCA(Life Cycle Assessment, 전과정평가)

- ISO(국제표준화기구)가 제정한 **환경경영분이**의 전 과정 평가 표준* 기준
- 사업활동에서 발생되는 탄소, 대기, 수질 등 종합적인 환경영향 평가
- 제품 생산 '제조업'에 요구되는 평가 → '운송' 영역의 LCA는 운송사에 요구

배터리 LCA 범위 ·--

원재료 채굴 \rightarrow 제조 \rightarrow 사용 \rightarrow 운송 \rightarrow 재사용/재제조/재활용 \rightarrow 폐기

사용 후 단계(End of Life, EoL) 범위

수거 · 집하 → 중간저장 → 재사용/재활용 시설까지의 운송 경로

*ISO14040: 환경경영분야의 전과정 평가 표준(LCA) 수행 원칙 및 목적 제시

※폐배터리운송LCA

- 폐배터리 운송과 관련된 LCA는 <u>현재 표준화 단계</u>, 국제연구 및 보고서가 공통으로 다루는 흐름과 영향요소 고려 필요
- 폐배터리 운송은 전체 EoL CLA에서 약 5~20%의 온실가스 배출 차지 → 물류네트워크 설계 최적화 및 안전규제 준수 필요

국기별 LCA 및 LCA 운송 단계 주요 고려 요소

※국가별LCA대표기관

구분	특징	
한국	환경부 산하 한국환경산업기술원 주관, LCA와 환경성적표지(EPD) 제도 운영	
EU	유럽연합 집행위원회 JRC(공동연구센터)가 LCA 정책 및 데이터 관리	
미국	미국환경보호국(EPA), 미국국립재생에너지연구소(NREL)	

※LCA 운송 영향범주 및 주요 고려 요소

	온실가스 배출량 (CO ₂ -eq)		운송거리 (ton · km 단위)	EV사용처 → 집하장/리사이클 링 센터까지 평균 거리 등
	에너지 소비량 (MJ단위)		운송 <mark>수단</mark> 별 영향	수단별(도로, 철도, 해상, 항공) 이산화탄소 배출량 고려
	대기오염 물질 배출 (NOx, SOx, PM등)		○小 不 巨人 エコ	특수포장, 온도관리, 폐배터리
	안전/사고리스크		운송 중 특수조건	충전상태 등 안전 관련 규제

^{*}ISO14044: 제품 및 서비스의 전 과정 평가 수행을 위한 실행 지침서

(1) 물류의 과제 - 운송

폐배터리 운송과 관련된 LCA는 현재 **표준화 단계**, 국제 연구 및 보고서가 공통적으로 다루는 흐름과 영향요소 고려 필요 배터리운송 LCA 기준, 폐배터리 운송 **안전성 & 환경평가 선제 대응 필요**

세방㈜ LCA(배터리 운송) 관련 현황

- 현재는 제조사(화주)에서 LCA 관련 지표를 요구하는 단계는 아니지만, 향후 제품(특히 배터리) 운송 과정 LCA 수행을 위한 선제 대응

※ 세방㈜ 환경부문 대외 인증 취득 목표

구분	관련기관	내용
전과정평가 (LCA)	ISO	사업 활동에서 발생되는 탄소, 대기, 수질 등 종합적 환경 영향 평가 기준
탄소발자국산정	ISO	생산 · 운송 · 폐기 등 과정에서 탄소 배출량을 정량화한 인증 절차
환경성적표지 인증 (EPD) 환경부		제품 및 서비스 전 과정의 환경 영향을 계량적으로 표시 한 제도 (국내 기준)
탄소공개프로젝트 검증	CDP*	기업의 환경과 관련된 활동 정보를 공개하는 국제 공시 제도(A~D등급 평가)

- *CDP: 영국에 본부를 둔 국제 NGO 주관 프로그램
- 매년 전 세계 주요 기업·도시·지자체에 기후변화, 물, 산림, 공급망, 생물다양성 등 환경 관련 정보 공개를 요청
- 기업과 기관의 ESG 성과를 평가해 투자자 · 금융기관 등에 제공

※ LCA 수행을 위한 세방㈜ 데이터 샘플링 현황

- 주요 운송구간: 3개 구간 (세방전지, 세방리튬배터리)

- 수집 데이터: 총 8,721개 데이터 *운송 중량 및 거리, 차량 정보 등
- 절차: 데이터 분석 통한 유효 데이터 추출
 - → 환경인증심사 신청 및 진행
 - → 자료 보완 및 인증 획득
 - ⇒ 향후 데이터 수집 구간 확대 및 LCA 수행 범위 확대, 전사 적용 목표

(2) 물류의 과제 - 미래 과제

배터리 순환경제에서 **물류는 단순 수송이 아니라** 안전한 운송 · 보관, 네트워크 설계, 디지털 기반 추적 · 관리, 비용 효율화, 규제 대응의 **Value Chain 핵심 인프라 역할 수행**

1) 안전 확보

- 충전상태(SOC)*, 손상(SOH)* 여부에 따라 화재 및 폭발 위험이 크기 때문에 안전 확보가 최우선
- 전용포장재, 온도·습도·전압 <u>모니터링 시스템 적용</u> 위험물 운송규정 준수, 사고대응체계 구축

3) 네트워크 구축

- 폐배터리 발생지 분산, 소량·비정형적으로 수거됨
- 역물류 시스템*과 스포크형 집하 구조*로 비용 최적화
- 공동물류(OEM, 재활용기업 간 협력) 통한 효율성 강화
- 전국단위 거점 물류센터 운영

2) 규제대응

- 국제표준/국가 규제 준수*UN위험물, 국내 화학물질관리법, 자원순환법 등
- 특히 한국은 폐배터리 전용 물류 및 보관 규정 미비
 - → 선제적 대응 필요

4) 추적관리 (Tracking)

- 배터리 이력(제조사, 성능, SOH, SOC 등) 정보에 의해 재사용 및 재활용 가치 평가 진행
- IoT센서, QR/NFC태그, 블록체인 등 <u>전주기 추적</u>
- 법규준수를 위한 디지털 기록 및 보고체계 구축

^{*}SOC, State of Charge: 전압, 전류, 내부저항, 배터리 모델 기반 현재 충전값

^{*}SOH, State of Health: 내부저항 증가율, 충방전 효율 등 종합 반영한 용량(성능) 유지값

^{*}역물류(Reverse Logistics): 소비자/사용지 → 회수 거점 → 제조사/재활용사

^{*}스포크형 집하구조: 여러지점(spoke)에서 중앙거점(Hub)으로 모아집하 → 다시 목적지로 분배

(3) 결론 및 제언

성공적인 배터리 순환경제는

<u>안전 · 효율 · 지속가능성을 연결하는 물류에서 완성</u>

배터리 물류의 주요 keywords

- ✓ 안전성: 사용후배터리 위험물 관리체계 구축 중
- ☑ 규제대응: EU, 미국 등 벤치마킹하여 국내 제도 정비
- ✓ 효율성: 스포크형 집하구조, 공동물류 등 필요
- ✓ 추적성: Battery Passport, 디지털 관리 도입 필수

성공적인 배터리 순환경제를 위한 물류의 역할

- ✓ 안전한 수거 · 운송 · 보관 규정 선제 대응
- ✓ 디지털 기반 추적관리 체계 구축
- ✓ 민간-정부 협력 통한 물류 인프라 확대
- ☑ 글로벌 규제 벤치마킹하여 국내 상황에 맞게 대응 필요

Contact Us

E-Mail: yooniljin@sebang.com

Tel: 02-3469-0399

WEB: https://www.sebang.com/

